scholarly journals HMG Box Transcriptional Repressor HBP1 Maintains a Proliferation Barrier in Differentiated Liver Tissue

2001 ◽  
Vol 21 (17) ◽  
pp. 5723-5732 ◽  
Author(s):  
Heather H. Shih ◽  
Mei Xiu ◽  
Stephen P. Berasi ◽  
Ellen M. Sampson ◽  
Andrew Leiter ◽  
...  

ABSTRACT We previously isolated HBP1 as a target of the retinoblastoma (RB) and p130 family members and as the first of the HMG box transcriptional repressors. Our subsequent work demonstrated that HBP1 coordinates differentiation in cell culture models. In the present study, we show that HBP1 regulates proliferation in a differentiated tissue of an animal. Using transgenic mice in which HBP1 expression was specifically increased in hepatocytes under control of the transthyretin promoter, we determined the impact of HBP1 on synchronous cell cycle reentry following partial hepatectomy. Modest overexpression of HBP1 yielded a detectable cell cycle phenotype. Following a mitogenic stimulus induced by two-thirds partial hepatectomy, mice expressing the HBP1 transgene showed a 10- to 12-h delay in progression through G1 to the peak of S phase. There was a concomitant delay in mid-G1events, such as the induction of cyclin E. While the delay in G1 and S phases correlated with the slight overexpression of transgenic HBP1, the level of the endogenous HBP1 protein itself declined in S phase. In contrast, the onset of the immediate-early response following partial hepatectomy was unchanged in HBP1 transgenic mice. This observation indicated that the observed delay in S phase did not result from changes in signaling pathways leading into the G0-to-G1 transition. Finally, transgenic mice expressing a mutant HBP1 lacking the N-terminal RB interacting domain showed a stronger S-phase response following partial hepatectomy. These results provide the first evidence that HBP1 can regulate cell cycle progression in differentiated tissues.

2014 ◽  
Vol 307 (11) ◽  
pp. G1073-G1087 ◽  
Author(s):  
Bryan C. Tackett ◽  
Hongdan Sun ◽  
Yu Mei ◽  
Janielle P. Maynard ◽  
Sayuri Cheruvu ◽  
...  

Extracellular nucleotides via activation of P2 purinergic receptors influence hepatocyte proliferation and liver regeneration in response to 70% partial hepatectomy (PH). Adult hepatocytes express multiple P2Y (G protein-coupled) and P2X (ligand-gated ion channels) purinergic receptor subtypes. However, the identity of key receptor subtype(s) important for efficient hepatocyte proliferation in regenerating livers remains unknown. To evaluate the impact of P2Y2 purinergic receptor-mediated signaling on hepatocyte proliferation in regenerating livers, wild-type (WT) and P2Y2 purinergic receptor knockout (P2Y2−/−) mice were subjected to 70% PH. Liver tissues were analyzed for activation of early events critical for hepatocyte priming and subsequent cell cycle progression. Our findings suggest that early activation of p42/44 ERK MAPK (5 min), early growth response-1 (Egr-1) and activator protein-1 (AP-1) DNA-binding activity (30 min), and subsequent hepatocyte proliferation (24–72 h) in response to 70% PH were impaired in P2Y2−/− mice. Interestingly, early induction of cytokines (TNF-α, IL-6) and cytokine-mediated signaling (NF-κB, STAT-3) were intact in P2Y2−/− remnant livers, uncovering the importance of cytokine-independent and nucleotide-dependent early priming events critical for subsequent hepatocyte proliferation in regenerating livers. Hepatocytes isolated from the WT and P2Y2−/− mice were treated with ATP or ATPγS for 5–120 min and 12–24 h. Extracellular ATP alone, via activation of P2Y2 purinergic receptors, was sufficient to induce ERK phosphorylation, Egr-1 protein expression, and key cyclins and cell cycle progression of hepatocytes in vitro. Collectively, these findings highlight the functional significance of P2Y2 purinergic receptor activation for efficient hepatocyte priming and proliferation in response to PH.


1994 ◽  
Vol 5 (3) ◽  
pp. 375-388 ◽  
Author(s):  
S V Tavtigian ◽  
S D Zabludoff ◽  
B J Wold

The emergence of cells from a quiescent G0 arrested state into the cell cycle is a multistep process that begins with the immediate early response to mitogens and extends into a specialized G1 phase. Many immediate early serum response genes including c-fos, c-myc, and c-jun are transcriptional regulators. To understand their roles in regulating cell cycle entry and progression, the identities of their regulatory targets must be determined. In this work we have cloned cDNA copies of messenger RNAs that are either up- or down-regulated at a mid-G1 point in the serum response (midserum-response [mid-SR]). The mid-SR panel is expected to include both direct and indirect targets of immediate early regulators. This expectation was confirmed by the identification of several transcriptional targets of conditional c-myc activity. In terms of cellular function, the mid-SR class is also expected to include execution genes needed for progression through G1 and into S-phase. DNA sequence data showed that the mid-SR panel included several genes already known to be involved in cell cycle progression or growth transformation, suggesting that previously unknown cDNAs in the same group are good candidates for other G1 execution functions. In functional assays of G0-->S-phase progression, c-myc expression can bypass the requirement for serum mitogens and drive a large fraction of G0 arrested cells through G1 into S-phase. However, beyond this general similarity, little is known about the relation of a serum-driven progression to a myc-driven progression. Using the mid-SR collection as molecular reporters, we found that the myc driven G1 differs qualitatively from the serum driven case. Instead of simply activating a subset of serum response genes, as might be expected, myc regulated some genes inversely relative to serum stimulation. This suggests that a myc driven progression from G0 may have novel properties with implications for its action in oncogenesis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1035-1035
Author(s):  
Jeffrey Malik ◽  
Jacquelyn Lillis ◽  
Michael Getman ◽  
Laurie A Steiner

Abstract Chromatin condensation culminating in enucleation is a hallmark of erythropoiesis, however the mechanisms driving this process are incompletely understood. Setd8 is the sole enzyme that can mono-methylate histone H4, lysine 20 (H4K20me1) and is an important regulator of cell cycle progression, higher order chromatin structure, and genome stability. (Reviewed in Beck, Genes and Development, 2010) Setd8 and H4K20me1 are unique among epigenetic regulators in that their expression is dynamically regulated during the cell cycle. Setd8 expression peaks during G2/M, where it promotes mitotic chromatin condensation, and becomes undetectable during S-phase due to ubiquitin dependent destruction. (Oda, Mol Cell, 2010) The presence of H4K20me1 mirrors that of Setd8, peaking in G2/M, and reaching a nadir during S-phase due to removal by the histone demethylase PHF8. (Liu, Nature, 2010) Interestingly, Setd8 is expressed at levels 8- to 10- fold higher in CD71+ erythroblasts than in any other cell type, (Wu Genome Biology,2009) suggesting that it has an erythroid-specific function. We hypothesize that Setd8 drives chromatin condensation in maturing erythroblasts. In cell lines, forced accumulation of H4K20me1 during S-phase due to perturbation of either Setd8 or PHF8 results in pre-mitotic chromatin condensation (Centore Mol Cell 2010; Liu Nature 2010). We demonstrate that primary erythroblasts express Setd8 and accumulate H4K20me1 throughout the cell cycle, suggesting that Setd8 and H4K20me1 in promote chromatin condensation during terminal maturation. We further demonstrate that Setd8 is essential for erythropoiesis, with erythroid-specific Setd8 deletion resulting in profound anemia that is lethal by E12.5. The early onset of anemia indicates a defect in the primitive erythroid lineage, which emerges from the yolk sac at E8.5, and proliferates, matures, and enucleates in the circulation as a semi-synchronous cohort. (Kingsley, Blood, 2004) Detailed analyses of Setd8-null erythroblasts revealed severe defects in cell cycle progression, increased DNA content suggesting loss of genomic integrity, accumulation of DNA damage, and a modest increase in the rate of apoptosis. Global transcriptome analyses demonstrated that Setd8-null erythroblasts had activation of checkpoint genes such as CDKN1a and Gene Set Enrichment Analyses identified significant enrichment of cell cycle and p53 signaling pathways. Despite evidence of p53 activation, concomitant p53 deletion was not able to rescue the Set8-null phenotype, indicating that Setd8 has an essential role in promoting erythroid proliferation and survival that is independent of the p53 pathway. Consistent with our hypothesis that Setd8 drives chromatin condensation in maturing erythroblasts, the nuclear area of Setd8-null cells was nearly twice that of controls at E11.5 (119 and 69 um2, respectively p<0.0003). Transmission electron microscopy confirmed a profound defect in global chromatin condensation in the Setd8-null cells. Unexpectedly, heterochromatin was nearly absent from the Setd8-null cells, with the Setd8-null cells containing only a small amount of heterochromatin localized to the nuclear periphery. To determine the impact of Setd8 deletion on local chromatin structure, we performed ATAC-seq (Assay for Transposase Accessible Chromatin) on sorted populations of Setd8-null and control erythroblasts. Preliminary analyses of ATAC-seq data identified 364 ATAC peaks present in the Setd8-null cells but not in controls (p<0.001). Intriguingly, Gene Ontogeny analyses of the genes nearest to those regions was significant for multiple terms associated with higher order chromatin structure including "regulation of chromatin organization" and "positive regulation of histone deacetylation." Taken together, our results indicate that erythroblasts have adapted an essential cell cycle regulator to drive chromatin condensation during terminal maturation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 205
Author(s):  
Su-Jin Jeong ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Spirulina is a type of filamentous blue-green microalgae known to be rich in nutrients and to have pharmacological effects, but the effect of spirulina on the small intestine epithelium is not well understood. Therefore, this study aims to investigate the proliferative effects of spirulina crude protein (SPCP) on a rat intestinal epithelial cells IEC-6 to elucidate the mechanisms underlying its effect. First, the results of wound-healing and cell viability assays demonstrated that SPCP promoted migration and proliferation in a dose-dependent manner. Subsequently, when the mechanisms of migration and proliferation promotion by SPCP were confirmed, we found that the epidermal growth factor receptor (EGFR) and mitogen-activated protein (MAPK) signaling pathways were activated by phosphorylation. Cell cycle progression from G0/G1 to S phase was also promoted by SPCP through upregulation of the expression levels of cyclins and cyclin-dependent kinases (Cdks), which regulate cell cycle progression to the S phase. Meanwhile, the expression of cyclin-dependent kinase inhibitors (CKIs), such as p21 and p27, decreased with SPCP. In conclusion, our results indicate that activation of EGFR and its downstream signaling pathway by SPCP treatment regulates cell cycle progression. Therefore, these results contribute to the research on the molecular mechanism for SPCP promoting the migration and proliferation of rat intestinal epithelial cells.


2000 ◽  
Vol 74 (19) ◽  
pp. 9152-9166 ◽  
Author(s):  
Grace Y. Lin ◽  
Robert A. Lamb

ABSTRACT Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G1 to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G2 or M phase. The levels of p53 and p21CIP1were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VΔC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein.


Author(s):  
Deqin Kong ◽  
Rui Liu ◽  
Jiangzheng Liu ◽  
Qingbiao Zhou ◽  
Jiaxin Zhang ◽  
...  

Cubic membranes (CMs) represent unique biological membrane structures with highly curved three-dimensional periodic minimal surfaces, which have been observed in a wide range of cell types and organelles under various stress conditions (e. g., starvation, virus-infection, and oxidation). However, there are few reports on the biological roles of CMs, especially their roles in cell cycle. Hence, we established a stable cell population of human hepatocellular carcinoma cells (HepG2) of 100% S phase by thymidine treatment, and determined certain parameters in G2 phase released from S phase. Then we found a close relationship between CMs formation and cell cycle, and an increase in reactive oxygen species (ROS) and mitochondrial function. After the synchronization of HepG2 cells were induced, CMs were observed through transmission electron microscope in G2 phase but not in G1, S and M phase. Moreover, the increased ATP production, mitochondrial and intracellular ROS levels were also present in G2 phase, which demonstrated a positive correlation with CMs formation by Pearson correlation analysis. This study suggests that CMs may act as an antioxidant structure in response to mitochondria-derived ROS during G2 phase and thus participate in cell cycle progression.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2896-2904 ◽  
Author(s):  
Josée Laliberté ◽  
Ann Yee ◽  
Yue Xiong ◽  
Beverly S. Mitchell

Depletion of guanine nucleotide pools after inhibition of inosine monophosphate dehydrogenase (IMPDH) potently inhibits DNA synthesis by arresting cells in G1 and has been shown to induce the differentiation of cultured myeloid and erythroid cell lines, as well as chronic granulocytic leukemic cells after blast transformation. Inhibitors of IMPDH are also highly effective as immunosuppressive agents. The mechanism underlying these pleiotropic effects of depletion of guanine nucleotides is unknown. We have examined the effects of mycophenolic acid (MPA), a potent IMPDH inhibitor, on the cell cycle progression of activated normal human T lymphocytes. MPA treatment resulted in the inhibition of pRb phosphorylation and cell entry into S phase. The expression of cyclin D3, a major component of the cyclin-dependent kinase (CDK) activity required for pRb phosphorylation, was completely abrogated by MPA treatment of T cells activated by interleukin-2 (IL-2) and leucoagglutinin (PHA-L), whereas the expression of cyclin D2, CDK6, and CDK4 was more mildly attenuated. The direct kinase activity of a complex immunoprecipitated with anti-CDK6 antibody was also inhibited. In addition, MPA prevented the IL-2–induced elimination of p27Kip1, a CDK inhibitor, and resulted in the retention of high levels of p27Kip1 in IL-2/PHA-L–treated T cells bound to CDK2. These results indicate that inhibition of the de novo synthesis of guanine nucleotides blocks the transition of normal peripheral blood T lymphocytes from G0 to S phase in early- to mid-G1 and that this cell cycle arrest results from inhibition of the induction of cyclin D/CDK6 kinase and the elimination of p27Kip1 inhibitory activity.


1999 ◽  
Vol 19 (7) ◽  
pp. 4623-4632 ◽  
Author(s):  
Masahiro Hitomi ◽  
Dennis W. Stacey

ABSTRACT Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.


2018 ◽  
Vol 115 (13) ◽  
pp. 3344-3349 ◽  
Author(s):  
Amit Kumar ◽  
Mohanraj Gopalswamy ◽  
Annika Wolf ◽  
David J. Brockwell ◽  
Mechthild Hatzfeld ◽  
...  

Cell cycle progression is tightly regulated by cyclin-dependent kinases (CDKs). The ankyrin-repeat protein p19INK4dfunctions as a key regulator of G1/S transition; however, its molecular mode of action is unknown. Here, we combine cell and structural biology methods to unravel the mechanism by which p19INK4dcontrols cell cycle progression. We delineate how the stepwise phosphorylation of p19INK4dSer66 and Ser76 by cell cycle-independent (p38) and -dependent protein kinases (CDK1), respectively, leads to local unfolding of the three N-terminal ankyrin repeats of p19INK4d. This dissociates the CDK6–p19INK4dinhibitory complex and, thereby, activates CDK6. CDK6 triggers entry into S-phase, whereas p19INK4dis ubiquitinated and degraded. Our findings reveal how signaling-dependent p19INK4dunfolding contributes to the irreversibility of G1/S transition.


Sign in / Sign up

Export Citation Format

Share Document