scholarly journals Male Infertility, Impaired Sperm Motility, and Hydrocephalus in Mice Deficient in Sperm-Associated Antigen 6

2002 ◽  
Vol 22 (17) ◽  
pp. 6298-6305 ◽  
Author(s):  
Rossana Sapiro ◽  
Igor Kostetskii ◽  
Patricia Olds-Clarke ◽  
George L. Gerton ◽  
Glenn L. Radice ◽  
...  

ABSTRACT Gene targeting was used to create mice lacking sperm-associated antigen 6 (Spag6), the murine orthologue of Chlamydomonas PF16, an axonemal protein containing eight armadillo repeats predicted to be important for flagellar motility and stability of the axoneme central apparatus. Within 8 weeks of birth, approximately 50% of Spag6-deficient animals died with hydrocephalus. Spag6-deficient males surviving to maturity were infertile. Their sperm had marked motility defects and was morphologically abnormal with frequent loss of the sperm head and disorganization of flagellar structures, including loss of the central pair of microtubules and disorganization of the outer dense fibers and fibrous sheath. We conclude that Spag6 is essential for sperm flagellar motility and that it is important for the maintenance of the structural integrity of mature sperm. The occurrence of hydrocephalus in the mutant mice also implicates Spag6 in the motility of ependymal cilia.

1996 ◽  
Vol 132 (3) ◽  
pp. 359-370 ◽  
Author(s):  
E F Smith ◽  
P A Lefebvre

Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.


Author(s):  
M Zhang ◽  
E G Bromfield ◽  
T Veenendaal ◽  
J Klumperman ◽  
J B Helms ◽  
...  

Abstract Mammalian sperm carry a variety of highly condensed insoluble protein structures such as the perinuclear theca, the fibrous sheath and the outer dense fibers, which are essential to sperm function. We studied the role of cysteine rich secretory protein 2 (CRISP2); a known inducer of non-pathological protein amyloids, in pig sperm with a variety of techniques. CRISP2, which is synthesized during spermatogenesis, was localized by confocal immunofluorescent imaging in the tail and in the post-acrosomal region of the sperm head. High resolution localization by immunogold labeling electron microscopy (EM) of ultrathin cryosections revealed that CRISP2 was present in the perinuclear theca and neck region of the sperm head, as well as in the outer dense fibers and the fibrous sheath of the sperm tail. Interestingly, we found that under native, non-reducing conditions CRISP2 formed oligomers both in the tail and the head but with different molecular weights and different biochemical properties. The tail oligomers were insensitive to reducing conditions but nearly complete dissociated into monomers under 8 M urea treatment, while the head 250 kDa CRISP2 positive oligomer completely dissociated into CRISP2 monomers under reducing conditions. The head specific dissociation of CRISP2 oligomer is likely a result of the reduction of various sulfhydryl groups in the cysteine rich domain of this protein. The sperm head CRISP2 shared typical solubilization characteristics with other perinuclear theca proteins as was shown with sequential detergent and salt treatments. Thus, CRISP2 is likely to participate in the formation of functional protein complexes in both the sperm tail and sperm head, but with differing oligomeric organization and biochemical properties. Future studies will be devoted to the understand the role of CRISP2 in sperm protein complexes formation and how this contributes to the fertilization processes.


2020 ◽  
Vol 26 (4) ◽  
pp. 474-500 ◽  
Author(s):  
Christiane Pleuger ◽  
Mari S Lehti ◽  
Jessica EM Dunleavy ◽  
Daniela Fietz ◽  
Moira K O’Bryan

Abstract BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis—the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review—protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.


2004 ◽  
Vol 3 (4) ◽  
pp. 870-879 ◽  
Author(s):  
Erin E. Dymek ◽  
Paul A. Lefebvre ◽  
Elizabeth F. Smith

ABSTRACT Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubules.


1975 ◽  
Vol 66 (2) ◽  
pp. 225-232 ◽  
Author(s):  
B A Afzelius ◽  
R Eliasson ◽  
O Johnsen ◽  
C Lindholmer

Sermatozoa from two brothers who are not twins were found to be straight and immotile. Examinations of the sperm showed that oxygen consumption and lactic acid production were normal; viability tests showed that the percentage of dead sperm was not increased. The ultrastructural appearance of the sperm tail was normal except for a complete lack of dynein arms and some irregularities in the arrangement of the accessory fibers and the longitudinal columns of the fibrous sheath. The mitochondrial apparatus and the sperm head conform to the conventional model. According to the sliding-filament hypothesis first proposed by Afzelius (1959. J. Biophys. Biochem. Cytol. 5:269.), the arms are responsible for the bending movements of the tail. The simplest explanation for the simultaneous lack of arms and sperm motility appears to be that the two brothers have a genetic disorder involving production, assembly, or attachment of the dynein arms.


2019 ◽  
Vol 375 (1792) ◽  
pp. 20190164 ◽  
Author(s):  
Lei Zhao ◽  
Yuqing Hou ◽  
Nathan A. McNeill ◽  
George B. Witman

Nearly all motile cilia and flagella (terms here used interchangeably) have a ‘9+2’ axoneme containing nine outer doublet microtubules and two central microtubules. The central pair of microtubules plus associated projections, termed the central apparatus (CA), is involved in the control of flagellar motility and is essential for the normal movement of ‘9+2’ cilia. Research using the green alga Chlamydomonas reinhardtii , an important model system for studying cilia, has provided most of our knowledge of the protein composition of the CA, and recent work using this organism has expanded the number of known and candidate CA proteins nearly threefold. Here we take advantage of this enhanced proteome to examine the genomes of a wide range of eukaryotic organisms, representing all of the major phylogenetic groups, to identify predicted orthologues of the C. reinhardtii CA proteins and explore how widely the proteins are conserved and whether there are patterns to this conservation. We also discuss in detail two contrasting groups of CA proteins—the ASH-domain proteins, which are broadly conserved, and the PAS proteins, which are restricted primarily to the volvocalean algae. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.


2020 ◽  
Vol 102 (5) ◽  
pp. 988-998
Author(s):  
Bingbing Wu ◽  
Hui Gao ◽  
Chao Liu ◽  
Wei Li

Abstract A strong sperm head–tail coupling apparatus (HTCA) is needed to ensure the integrity of spermatozoa during their fierce competition to fertilize the egg. A lot of HTCA-specific components have evolved to strengthen the attachment of the tail to the implantation fossa at the sperm head. Defects in HTCA formation lead to acephalic spermatozoa syndrome and pathologies of some male infertility. Recent studies have provided insights into the pathogenic molecular mechanisms of acephalic spermatozoa syndrome. Here, we summarize the proteins involved in sperm neck development and focus on their roles in the formation of HTCA. In addition, we discuss the fine structures of the sperm neck in different species from an evolutionary view, highlighting the potential conservative mechanism of HTCA formation.


1984 ◽  
Vol 98 (2) ◽  
pp. 619-628 ◽  
Author(s):  
G L Gerton ◽  
C F Millette

During the short-term culturing of mouse spermatogenic cells, flagella were generated by round spermatids previously lacking tails. Unseparated germ cells were obtained by enzymatic treatments and round spermatids (greater than 90% pure) were purified by unit gravity sedimentation. As determined by Nomarski or phase-contrast microscopy, no cells had flagella immediately after isolation; flagella were first clearly detected after 6 1/2 h of culture in Eagle's minimal essential medium containing 10% fetal bovine serum and 6 mM lactate. After 24 h, approximately 20% of round spermatids had formed flagella. Multinucleated round spermatids often formed multiple flagella, the number never exceeding the number of nuclei per symplast. Round spermatids were the only spermatogenic cells capable of tail formation. Flagella elongation was blocked by 1 microM demecolcine, an inhibitor of tubulin polymerization. Indirect immunofluorescence localized tubulin in the flagella. As seen by scanning electron microscopy, flagella developed as early as 2 h after culture and continued to elongate over the next 20 h, reaching lengths of at least 19 micron. Transmission electron microscopy demonstrated that flagella formed in culture resembled flagella from Golgi-phase round spermatids in situ; the flagella consisted of "9+2" axonemes lacking other accessory structures such as outer dense fibers and the fibrous sheath. As determined by acridine orange staining of the developing acrosomes, all spermatids that formed flagella in culture were Golgi-phase spermatids. By these criteria, the structures are indeed true flagella, corresponding in appearance to what others have described for early mammalian spermatid flagella in situ. We believe this is the first substantiated report of limited in vitro differentiation by isolated mammalian spermatids.


Sign in / Sign up

Export Citation Format

Share Document