scholarly journals A Novel and Conserved Protein-Protein Interaction Domain of Mammalian Lin-2/CASK Binds and Recruits SAP97 to the Lateral Surface of Epithelia

2002 ◽  
Vol 22 (6) ◽  
pp. 1778-1791 ◽  
Author(s):  
Seonok Lee ◽  
Shuling Fan ◽  
Olya Makarova ◽  
Samuel Straight ◽  
Ben Margolis

ABSTRACT Mammalian Lin-2 (mLin-2)/CASK is a membrane-associated guanylate kinase (MAGUK) and contains multidomain modules that mediate protein-protein interactions important for the establishment and maintenance of neuronal and epithelial cell polarization. The importance of mLin-2/CASK in mammalian development is demonstrated by the fact that mutations in mLin-2/CASK or SAP97, another MAGUK protein, lead to cleft palate in mice. We recently identified a new protein-protein interaction domain, called the L27 domain, which is present twice in mLin-2/CASK. In this report, we further define the binding of the L27C domain of mLin-2/CASK to the L27 domain of mLin-7 and identify the binding partner for L27N of mLin-2/CASK. Biochemical analysis reveals that this L27N domain binds to the N terminus of SAP97, a region that was previously reported to be essential for the lateral membrane recruitment of SAP97 in epithelia. Our colocalization studies, using dominant-negative mLin-2/CASK, show that the association with mLin-2/CASK is crucial for lateral localization of SAP97 in MDCK cells. We also report the identification of a novel isoform of Discs Large, a Drosophila melanogaster orthologue of SAP97, which contains a region highly related to the SAP97 N terminus and which binds Camguk, a Drosophila orthologue of mLin-2/CASK. Our data identify evolutionarily conserved protein-protein interaction domains that link mLin-2/CASK to SAP97 and account for their common phenotype when mutated in mice.

2012 ◽  
Vol 3 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Moritz Graeff ◽  
Stephan Wenkel

AbstractMost proteins do not function alone but act in protein complexes. For several transcriptional regulators, it is known that they have to homo- or heterodimerize prior to DNA binding. These protein interactions occur through defined protein-protein-interaction (PPI) domains. More than two decades ago, inhibitor of DNA binding (ID), a small protein containing a single helix-loop-helix (HLH) motif was identified. ID is able to interact with the larger DNA-binding basic helix-loop-helix (bHLH) transcription factors, but due to the lack of the basic domain required for DNA binding, ID traps bHLH proteins in non-functional complexes. Work in plants has, in the recent years, identified more small proteins acting in analogy to ID. A hallmark of these small negative acting proteins is the presence of a protein-interaction domain and the absence of other functional domains required for transcriptional activation or DNA binding. Because these proteins are often very small and function in analogy to microRNAs (meaning in a dominant-negative manner), we propose to refer to these protein species as ‘microProteins’ (miPs). miPs can be encoded in the genome as individual transcription units but can also be produced by alternative splicing. Other negatively acting proteins, consisting of more than one domain, have also been identified, and we propose to call these proteins ‘interfering proteins’ (iPs). The aim of this review is to state more precisely how to discriminate miPs from iPs. Therefore, we will highlight recent findings on both protein species and describe their mode of action. Furthermore, miPs have the ability to regulate proteins of diverse functions, emphasizing their value as biotechnological tools.


Author(s):  
Yu-Miao Zhang ◽  
Jun Wang ◽  
Tao Wu

In this study, the Agrobacterium infection medium, infection duration, detergent, and cell density were optimized. The sorghum-based infection medium (SbIM), 10-20 min infection time, addition of 0.01% Silwet L-77, and Agrobacterium optical density at 600 nm (OD600), improved the competence of onion epidermal cells to support Agrobacterium infection at >90% efficiency. Cyclin-dependent kinase D-2 (CDKD-2) and cytochrome c-type biogenesis protein (CYCH), protein-protein interactions were localized. The optimized procedure is a quick and efficient system for examining protein subcellular localization and protein-protein interaction.


2021 ◽  
Vol 11 (5) ◽  
pp. 578
Author(s):  
Oge Gozutok ◽  
Benjamin Ryan Helmold ◽  
P. Hande Ozdinler

Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.


2012 ◽  
Vol 23 (4) ◽  
pp. 687-700 ◽  
Author(s):  
Ryohei Suzuki ◽  
Junko Y. Toshima ◽  
Jiro Toshima

Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.


2021 ◽  
Author(s):  
Laia Miret Casals ◽  
Willem Vannecke ◽  
Kurt Hoogewijs ◽  
Gianluca Arauz ◽  
Marina Gay ◽  
...  

We describe furan as a triggerable ‘warhead’ for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction with known 3D structure...


2015 ◽  
Vol 4 (4) ◽  
pp. 35-51 ◽  
Author(s):  
Bandana Barman ◽  
Anirban Mukhopadhyay

Identification of protein interaction network is very important to find the cell signaling pathway for a particular disease. The authors have found the differentially expressed genes between two sample groups of HIV-1. Samples are wild type HIV-1 Vpr and HIV-1 mutant Vpr. They did statistical t-test and found false discovery rate (FDR) to identify the genes increased in expression (up-regulated) or decreased in expression (down-regulated). In the test, the authors have computed q-values of test to identify minimum FDR which occurs. As a result they found 172 differentially expressed genes between their sample wild type HIV-1 Vpr and HIV-1 mutant Vpr, R80A. They found 68 up-regulated genes and 104 down-regulated genes. From the 172 differentially expressed genes the authors found protein-protein interaction network with string-db and then clustered (subnetworks) the PPI networks with cytoscape3.0. Lastly, the authors studied significance of subnetworks with performing gene ontology and also studied the KEGG pathway of those subnetworks.


Author(s):  
Hugo Willy

Recent breakthroughs in high throughput experiments to determine protein-protein interaction have generated a vast amount of protein interaction data. However, most of the experiments could only answer the question of whether two proteins interact but not the question on the mechanisms by which proteins interact. Such understanding is crucial for understanding the protein interaction of an organism as a whole (the interactome) and even predicting novel protein interactions. Protein interaction usually occurs at some specific sites on the proteins and, given their importance, they are usually well conserved throughout the evolution of the proteins of the same family. Based on this observation, a number of works on finding protein patterns/motifs conserved in interacting proteins have emerged in the last few years. Such motifs are collectively termed as the interaction motifs. This chapter provides a review on the different approaches on finding interaction motifs with a discussion on their implications, potentials and possible areas of improvements in the future.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
K. Anamika ◽  
K. R. Abhinandan ◽  
K. Deshmukh ◽  
N. Srinivasan

Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely,Homo sapiens,Mus musculus,Rattus norvegicus, andDrosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3326 ◽  
Author(s):  
Benoît Béganton ◽  
Etienne Coyaud ◽  
Estelle M. N. Laurent ◽  
Alain Mangé ◽  
Julien Jacquemetton ◽  
...  

RAS proteins (KRAS, NRAS and HRAS) are frequently activated in different cancer types (e.g., non-small cell lung cancer, colorectal cancer, melanoma and bladder cancer). For many years, their activities were considered redundant due to their high degree of sequence homology (80% identity) and their shared upstream and downstream protein partners. However, the high conservation of the Hyper-Variable-Region across mammalian species, the preferential activation of different RAS proteins in specific tumor types and the specific post-translational modifications and plasma membrane-localization of each paralog suggest they could ensure discrete functions. To gain insights into RAS proteins specificities, we explored their proximal protein–protein interaction landscapes using the proximity-dependent biotin identification technology (BioID) in Flp-In T-REx 293 cell lines stably transfected and inducibly expressing wild type KRAS4B, NRAS or HRAS. We identified more than 800 high-confidence proximal interactors, allowing us to propose an unprecedented comparative analysis of wild type RAS paralogs protein networks. These data bring novel information on poorly characterized RAS functions, e.g., its putative involvement in metabolic pathways, and on shared as well as paralog-specific protein networks that could partially explain the complexity of RAS functions. These networks of protein interactions open numerous avenues to better understand RAS paralogs biological activities.


Sign in / Sign up

Export Citation Format

Share Document