scholarly journals S100B Inhibits Myogenic Differentiation and Myotube Formation in a RAGE-Independent Manner

2003 ◽  
Vol 23 (14) ◽  
pp. 4870-4881 ◽  
Author(s):  
Guglielmo Sorci ◽  
Francesca Riuzzi ◽  
Anna Lisa Agneletti ◽  
Cristina Marchetti ◽  
Rosario Donato

ABSTRACT S100B is a Ca2+-modulated protein of the EF-hand type with both intracellular and extracellular roles. S100B, which is most abundant in the brain, has been shown to exert trophic and toxic effects on neurons depending on the concentration attained in the extracellular space. S100B is also found in normal serum, and its serum concentration increases in several nervous and nonnervous pathological conditions, suggesting that S100B-expressing cells outside the brain might release the protein and S100B might exert effects on nonnervous cells. We show here that at picomolar to nanomolar levels, S100B inhibits myogenic differentiation of rat L6 myoblasts via inactivation of p38 kinase with resulting decrease in the expression of the myogenic differentiation markers, myogenin, muscle creatine kinase, and myosin heavy chain, and reduction of myotube formation. Although myoblasts express the multiligand receptor RAGE, which has been shown to transduce S100B effects on neurons, S100B produces identical effects on myoblasts overexpressing either full-length RAGE or RAGE lacking the transducing domain. This suggests that S100B affects myoblasts by interacting with another receptor and that RAGE is not the only receptor for S100B. Our data suggest that S100B might participate in the regulation of muscle development and regeneration by inhibiting crucial steps of the myogenic program in a RAGE-independent manner.

2021 ◽  
Author(s):  
Kai Qiu ◽  
Yubo Wang ◽  
Doudou Xu ◽  
Linjuan He ◽  
Xin Zhang ◽  
...  

Abstract BackgroundCytosolic Ca2+ plays vital roles in myogenesis and muscle development. Key mutations of ryanodine receptor 1 (RyR1), a major Ca2+ release channel of endoplasmic reticulum (ER), are main causes of severe congenital myopathies. The role of RyR1 in myogenic differentiation has attracted intense research interest, however, it remains unclear. MethodsThis study employed RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts cells to explore the role of RyR1 in myogenic differentiation, myotube formation as well as the potential mechanism of RyR1-related myopathies.ResultsCytoplasmic Ca2+ concentration was significantly elevated during myogenic differentiation of both primary myogenic cells and myoblasts C2C12 cells, accompanied with a dramatic increase in RyR1 expression and resultant ER stress. Inhibition of RyR1 by siRNA-mediated silence or chemical inhibitor, dantrolene, significantly reduced cytosolic Ca2+, alleviated ER stress, and blocked multinucleated myotube formation. Moderate activation of ER stress effectively relieved myogenic differentiation stagnation induced by RyR1 suppression and demonstrated that RyR1 modulates myogenic differentiation via activation of Ca2+ -induced ER stress signaling. RyR1 knockout-induced Ca2+ leakage led to severe ER stress and excessive unfolded protein response, and drove cell fate from differentiation into apoptosis. ConclusionsTherefore, we concluded that dramatic increase in RyR1 expression is required for myogenic differentiation, and RyR1-mediated Ca2+ release leading to the activation of ER stress signaling serves a double-edged sword role during myogenic differentiation. This study contributes to a novel understanding of the role of RyR1 in muscle development and related congenital myopathies, and provides a potential target for regulation of muscle regeneration and tissue engineering.


2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Giselle A. Joseph ◽  
Min Lu ◽  
Maria Radu ◽  
Jennifer K. Lee ◽  
Steven J. Burden ◽  
...  

ABSTRACT Skeletal myogenesis is regulated by signal transduction, but the factors and mechanisms involved are not well understood. The group I Paks Pak1 and Pak2 are related protein kinases and direct effectors of Cdc42 and Rac1. Group I Paks are ubiquitously expressed and specifically required for myoblast fusion in Drosophila. We report that both Pak1 and Pak2 are activated during mammalian myoblast differentiation. One pathway of activation is initiated by N-cadherin ligation and involves the cadherin coreceptor Cdo with its downstream effector, Cdc42. Individual genetic deletion of Pak1 and Pak2 in mice has no overt effect on skeletal muscle development or regeneration. However, combined muscle-specific deletion of Pak1 and Pak2 results in reduced muscle mass and a higher proportion of myofibers with a smaller cross-sectional area. This phenotype is exacerbated after repair to acute injury. Furthermore, primary myoblasts lacking Pak1 and Pak2 display delayed expression of myogenic differentiation markers and myotube formation. These results identify Pak1 and Pak2 as redundant regulators of myoblast differentiation in vitro and in vivo and as components of the promyogenic Ncad/Cdo/Cdc42 signaling pathway.


2020 ◽  
pp. mcp.RA120.002166 ◽  
Author(s):  
Ronnie Blazev ◽  
Christopher Ashwood ◽  
Jodie L Abrahams ◽  
Long H Chung ◽  
Deanne Francis ◽  
...  

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development but our molecular understanding of the precise glycans, catalytic enzymes and lectins involved remain only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown di-galactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labelling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins most notably the up-regulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the up-regulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


2020 ◽  
Author(s):  
Ronnie Blazev ◽  
Christopher Ashwood ◽  
Jodie L. Abrahams ◽  
Long H. Chung ◽  
Deanne Francis ◽  
...  

ABSTRACTMany cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development but our molecular understanding of the precise glycans, catalytic enzymes and lectins involved remain only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown di-galactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labelling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins most notably the up-regulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the up-regulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Laura L Arnold ◽  
Alessandra Cecchini ◽  
Danny A Stark ◽  
Jacqueline Ihnat ◽  
Rebecca N Craigg ◽  
...  

The conversion of proliferating skeletal muscle precursors (myoblasts) to terminally-differentiated myocytes is a critical step in skeletal muscle development and repair. We show that EphA7, a juxtacrine signaling receptor, is expressed on myocytes during embryonic and fetal myogenesis and on nascent myofibers during muscle regeneration in vivo. In EphA7-/- mice, hindlimb muscles possess fewer myofibers at birth, and those myofibers are reduced in size and have fewer myonuclei and reduced overall numbers of precursor cells throughout postnatal life. Adult EphA7-/- mice have reduced numbers of satellite cells and exhibit delayed and protracted muscle regeneration, and satellite cell-derived myogenic cells from EphA7-/- mice are delayed in their expression of differentiation markers in vitro. Exogenous EphA7 extracellular domain will rescue the null phenotype in vitro, and will also enhance commitment to differentiation in WT cells. We propose a model in which EphA7 expression on differentiated myocytes promotes commitment of adjacent myoblasts to terminal differentiation.


2018 ◽  
Vol 115 (42) ◽  
pp. E9802-E9811 ◽  
Author(s):  
Jian Jun Jin ◽  
Wei Lv ◽  
Pan Xia ◽  
Zai Yan Xu ◽  
An Dai Zheng ◽  
...  

Although many long noncoding RNAs (lncRNAs) have been identified in muscle, their physiological function and regulatory mechanisms remain largely unexplored. In this study, we systematically characterized the expression profiles of lncRNAs during C2C12 myoblast differentiation and identified an intronic lncRNA,SYISL(SYNPO2intron sense-overlapping lncRNA), that is highly expressed in muscle. Functionally,SYISLpromotes myoblast proliferation and fusion but inhibits myogenic differentiation.SYISLknockout in mice results in significantly increased muscle fiber density and muscle mass. Mechanistically,SYISLrecruits the enhancer of zeste homolog 2 (EZH2) protein, the core component of polycomb repressive complex 2 (PRC2), to the promoters of the cell-cycle inhibitor genep21and muscle-specific genes such as myogenin (MyoG), muscle creatine kinase (MCK), and myosin heavy chain 4 (Myh4), leading to H3K27 trimethylation and epigenetic silencing of target genes. Taken together, our results reveal thatSYISLis a repressor of muscle development and plays a vital role in PRC2-mediated myogenesis.


2021 ◽  
Vol 22 (9) ◽  
pp. 4407
Author(s):  
Dana Adler ◽  
Zehavit Shapira ◽  
Shimon Weiss ◽  
Asher Shainberg ◽  
Abram Katz

Weak electromagnetic fields (WEF) alter Ca2+ handling in skeletal muscle myotubes. Owing to the involvement of Ca2+ in muscle development, we investigated whether WEF affects fusion of myoblasts in culture. Rat primary myoblast cultures were exposed to WEF (1.75 µT, 16 Hz) for up to six days. Under control conditions, cell fusion and creatine kinase (CK) activity increased in parallel and peaked at 4–6 days. WEF enhanced the extent of fusion after one and two days (by ~40%) vs. control, but not thereafter. Exposure to WEF also enhanced CK activity after two days (almost four-fold), but not afterwards. Incorporation of 3H-thymidine into DNA was enhanced by one-day exposure to WEF (~40%), indicating increased cell replication. Using the potentiometric fluorescent dye di-8-ANEPPS, we found that exposure of cells to 150 mM KCl resulted in depolarization of the cell membrane. However, prior exposure of cells to WEF for one day followed by addition of KCl resulted in hyperpolarization of the cell membrane. Acute exposure of cells to WEF also resulted in hyperpolarization of the cell membrane. Twenty-four hour incubation of myoblasts with gambogic acid, an inhibitor of the inward rectifying K+ channel 2.1 (Kir2.1), did not affect cell fusion, WEF-mediated acceleration of fusion or hyperpolarization. These data demonstrate that WEF accelerates fusion of myoblasts, resulting in myotube formation. The WEF effect is associated with hyperpolarization but WEF does not appear to mediate its effects on fusion by activating Kir2.1 channels.


2004 ◽  
Vol 15 (2) ◽  
pp. 481-496 ◽  
Author(s):  
Josefa Andrade ◽  
Hu Zhao ◽  
Brian Titus ◽  
Sandra Timm Pearce ◽  
Margarida Barroso

We have reported that p22, an N-myristoylated EF-hand Ca2+-binding protein, associates with microtubules and plays a role in membrane trafficking. Here, we show that p22 also associates with membranes of the early secretory pathway membranes, in particular endoplasmic reticulum (ER). On binding of Ca2+, p22's ability to associate with membranes increases in an N-myristoylation-dependent manner, which is suggestive of a nonclassical Ca2+-myristoyl switch mechanism. To address the intracellular functions of p22, a digitonin-based “bulk microinjection” assay was developed to load cells with anti-p22, wild-type, or mutant p22 proteins. Antibodies against a p22 peptide induce microtubule depolymerization and ER fragmentation; this antibody-mediated effect is overcome by preincubation with the respective p22 peptide. In contrast, N-myristoylated p22 induces the formation of microtubule bundles, the accumulation of ER structures along the bundles as well as an increase in ER network formation. An N-myristoylated Ca2+-binding p22 mutant, which is unable to undergo Ca2+-mediated conformational changes, induces microtubule bundling and accumulation of ER structures along the bundles but does not increase ER network formation. Together, these data strongly suggest that p22 modulates the organization and dynamics of microtubule cytoskeleton in a Ca2+-independent manner and affects ER network assembly in a Ca2+-dependent manner.


Rare Tumors ◽  
2021 ◽  
Vol 13 ◽  
pp. 203636132098665
Author(s):  
Garcia-Ortega Dorian Yarih ◽  
Caro-Sánchez Claudia HS ◽  
Alvarez-Cano Alethia ◽  
Alvarez-Bojorquez Mario ◽  
Melgarejo-Estefan Emmanuel ◽  
...  

Sarcomas are a heterogenous group of malignant tumors with origin or mesenchymal differentiation, they comprise 1–2% of all solid tumors. Retroperitoneum is the second most frequent site affected. Prognosis is worse compared to the limbs, with a 5y OS of 36–58%, and 50–60% patients will relapse. Dedifferentiated liposarcomas (ddLPS) are more aggressive, it is known that presence of a de-differentiated component increases the probability of distant recurrence and lowers OS. There is little information about the specific impact of each type of de-differentiation. To determine if the presence of myogenic differentiation markers in DDLPS is an adverse prognostic factor. A retrospective, observational, analytic cohort study was performed. Cases identified from the electronic clinical files from the National Cancer Institute in Mexico City, we included cases from January 1st 2005 to December 31st 2016. We correlated the presence of expression of myogenic markers (Smooth muscle actin, Calponin, H-caldesmon, Desmin and Myogenin) in the dedifferentiated component of DDLPS with overall survival and surgical outcomes. One hundred and forty-three cases were analyzed. Eighty-two were liposarcomas, and 38 had a dedifferentiated component. Of these 38 cases, 21(55.3%) were males and, 17(44.7%) were females. Median age was 54.1(27–79) years, median tumor size was 28 cm (13–56). Most patients had locally advanced disease: 32(84.2%) were in stage IIIB. 2.6% had metastatic disease and 5(13.2%) had stage Ib at diagnosis. Myogenic marker expression was found in 18.4% of cases; these patients had a worse median survival than cases with no myogenic expression: 18 months (95% CI 15.4–20.5) vs 32 months (95% CI 21.8–42.1) p = 0.01, we also found a relation with higher postoperative morbidity in these cases ( p = 0.045). The presence of myogenic differentiation markers might be associated with a worse prognosis, in our series it corelated with worse OS, however it is not a common event. Relation with surgical morbidity is to be analyzed in further studies.


2021 ◽  
Author(s):  
Keisuke Hitachi ◽  
Yuri Kiyofuji ◽  
Masashi Nakatani ◽  
Kunihiro Tsuchida

RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of hnRNPK for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level via binding to Myoparr. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays multiple lncRNA-dependent and -independent roles in the inhibition of myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.


Sign in / Sign up

Export Citation Format

Share Document