scholarly journals Novel SWI/SNF Chromatin-Remodeling Complexes Contain a Mixed-Lineage Leukemia Chromosomal Translocation Partner

2003 ◽  
Vol 23 (8) ◽  
pp. 2942-2952 ◽  
Author(s):  
Zuqin Nie ◽  
Zhijiang Yan ◽  
Everett H. Chen ◽  
Salvatore Sechi ◽  
Chen Ling ◽  
...  

ABSTRACT The SWI/SNF family of chromatin-remodeling complexes has been discovered in many species and has been shown to regulate gene expression by assisting transcriptional machinery to gain access to their sites in chromatin. Several complexes of this family have been reported for humans. In this study, two additional complexes are described that belong to the same SWI/SNF family. These new complexes contain as many as eight subunits identical to those found in other SWI/SNF complexes, and they possess a similar ATP-dependent nucleosome disruption activity. But unlike known SWI/SNFs, the new complexes are low in abundance and contain an extra subunit conserved between human and yeast SWI/SNF complexes. This subunit, ENL, is a homolog of the yeast SWI/SNF subunit, ANC1/TFG3. Moreover, ENL is a fusion partner for the gene product of MLL that is a common target for chromosomal translocations in human acute leukemia. The resultant MLL-ENL fusion protein associates and cooperates with SWI/SNF complexes to activate transcription of the promoter of HoxA7, a downstream target essential for oncogenic activity of MLL-ENL. Our data suggest that human SWI/SNF complexes show considerable heterogeneity, and one or more may be involved in the etiology of leukemia by cooperating with MLL fusion proteins.

2019 ◽  
Vol 11 (10) ◽  
pp. 886-898 ◽  
Author(s):  
Cai Han ◽  
Lin-Yu Sun ◽  
Wen-Tao Wang ◽  
Yu-Meng Sun ◽  
Yue-Qin Chen

Abstract Chromosomal translocation leads to the juxtaposition of two otherwise separate DNA loci, which could result in gene fusion. These rearrangements at the DNA level are catastrophic events and often have causal roles in tumorigenesis. The oncogenic DNA messages are transferred to RNA molecules, which are in most cases translated into cancerous fusion proteins. Gene expression programs and signaling pathways are altered in these cytogenetically abnormal contexts. Notably, non-coding RNAs have attracted increasing attention and are believed to be tightly associated with chromosome-rearranged cancers. These RNAs not only function as modulators in downstream pathways but also directly affect chromosomal translocation or the associated products. This review summarizes recent research advances on the relationship between non-coding RNAs and chromosomal translocations and on diverse functions of non-coding RNAs in cancers with chromosomal rearrangements.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dandan Wang ◽  
Daixi Li ◽  
Guangrong Qin ◽  
Wen Zhang ◽  
Jian Ouyang ◽  
...  

Chromosomal translocation, which generates fusion proteins in blood tumor or solid tumor, is considered as one of the major causes leading to cancer. Recent studies suggested that the disordered fragments in a fusion protein might contribute to its carcinogenicity. Here, we investigated the sequence feature near the breakpoints in the fusion partner genes, the structure features of breakpoints in fusion proteins, and the posttranslational modification preference in the fusion proteins. Results show that the breakpoints in the fusion partner genes have both sequence preference and structural preference. At the sequence level, nucleotide combination AG is preferred before the breakpoint and GG is preferred at the breakpoint. At the structural level, the breakpoints in the fusion proteins prefer to be located in the disordered regions. Further analysis suggests the phosphorylation sites at serine, threonine, and the methylation sites at arginine are enriched in disordered regions of the fusion proteins. Using EML4-ALK as an example, we further explained how the fusion protein leads to the protein disorder and contributes to its carcinogenicity. The sequence and structural features of the fusion proteins may help the scientific community to predict novel breakpoints in fusion genes and better understand the structure and function of fusion proteins.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 799-805 ◽  
Author(s):  
Luke F. Peterson ◽  
Anita Boyapati ◽  
Eun-Young Ahn ◽  
Joseph R. Biggs ◽  
Akiko Joo Okumura ◽  
...  

Abstract Nonrandom and somatically acquired chromosomal translocations can be identified in nearly 50% of human acute myeloid leukemias. One common chromosomal translocation in this disease is the 8q22;21q22 translocation. It involves the AML1 (RUNX1) gene on chromosome 21 and the ETO (MTG8, RUNX1T1) gene on chromosome 8 generating the AML1-ETO fusion proteins. In this review, we survey recent advances made involving secondary mutational events and alternative t(8;21) transcripts in relation to understanding AML1-ETO leukemogenesis.


2020 ◽  
Author(s):  
Derek H. Janssens ◽  
Michael P. Meers ◽  
Steven J. Wu ◽  
Ekaterina Babaeva ◽  
Soheil Meshinchi ◽  
...  

AbstractAcute myeloid and lymphoid leukemias often harbor chromosomal translocations involving the Mixed Lineage Leukemia-1 gene, which encodes the KMT2A lysine methyltransferase. The most common translocations produce in-frame fusions of KMT2A to trans-activation domains of chromatin regulatory proteins. Here we develop a strategy to map the genome-wide occupancy of oncogenic KMT2A fusion proteins in primary patient samples regardless of fusion partner. By modifying the versatile CUT&Tag method for full automation we identify common and tumor-specific patterns of aberrant chromatin regulation induced by different KMT2A fusion proteins. Integration of automated and single-cell CUT&Tag uncovers lineage heterogeneity within patient samples and provides an attractive avenue for future diagnostics.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 76 ◽  
Author(s):  
Adélia Mendes ◽  
Birthe Fahrenkrog

NUP214 is a component of the nuclear pore complex (NPC) with a key role in protein and mRNA nuclear export. Chromosomal translocations involving the NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription regulation. SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of CRM1 protein cargoes in the nucleus. SET-NUP214 is primarily associated with acute lymphoblastic leukemia (ALL), whereas DEK-NUP214 exclusively results in acute myeloid leukemia (AML), indicating different leukemogenic driver mechanisms. Secondary mutations in leukemic blasts may contribute to the different leukemia outcomes. Additional layers of complexity arise from the respective functions of SET and DEK in transcription regulation and chromatin remodeling, which may drive malignant hematopoietic transformation more towards ALL or AML. Another, less frequent fusion protein involving the C terminus of NUP214 results in the sequestosome-1 (SQSTM1)-NUP214 chimera, which was detected in ALL. SQSTM1 is a ubiquitin-binding protein required for proper autophagy induction, linking the NUP214 fusion protein to yet another cellular mechanism. The scope of this review is to summarize the general features of NUP214-related leukemia and discuss how distinct chromosomal translocation partners can influence the cellular effects of NUP214 fusion proteins in leukemia.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Young Su Kim ◽  
Hye-Jeong Lee ◽  
Man-ho Han ◽  
Nam-kyung Yoon ◽  
Yeu-chun Kim ◽  
...  

Abstract Background Growth factors (GFs) are signaling proteins that affect cellular processes such as growth, proliferation, and differentiation. GFs are used as cosmeceuticals, exerting anti-wrinkle, anti-aging, and whitening effects, and also as pharmaceuticals to treat wounds, growth failure, and oral mucositis. However, in mammalian and bacterial cells, low productivity and expression in inclusion bodies, respectively, of GFs does not satisfy the consumer demand. Here, we aimed to develop a bacterial expression system that produces high yields of soluble GFs that can be purified in their native forms. Results We present Fh8, an 8-kDa peptide from Fasciola hepatica with an N-terminal hexa-histidine (6HFh8), as a fusion partner for enhanced human GF production in recombinant Escherichia coli. The fusion partner harboring a tobacco etch virus (TEV) protease cleavage site was fused to the N-terminus of 10 human GFs: acidic and basic fibroblast growth factors (aFGF and bFGF, respectively), epidermal growth factor (EGF), human growth hormone (hGH), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor 165 (VEGF165), keratinocyte growth factor 1 (KGF-1), placental growth factor (PGF), stem cell factor (SCF), and tissue inhibitor of metalloproteinase 1 (TIMP-1). The fusion proteins were expressed in E. coli under the control of T7 promoter at three temperatures (25 °C, 30 °C, and 37 °C). All individual fusion proteins, except for SCF and TIMP-1, were successfully overexpressed in cytoplasmic soluble form at more than one temperature. Further, the original aFGF, IGF-1, EGF, and VEGF165 proteins were cleaved from the fusion partner by TEV protease. Five-liter fed-batch fermentation approaches for the 6HFh8-aFGF (lacking disulfide bonds) and 6HFh8-VEGF165 (a cysteine-rich protein) were devised to obtain the target protein at concentrations of 9.7 g/l and 3.4 g/l, respectively. The two GFs were successfully highly purified (> 99% purity). Furthermore, they exerted similar cell proliferative effects as those of their commercial equivalents. Conclusions We demonstrated that 6HFh8-GF fusion proteins could be overexpressed on a g/l scale in the cytoplasm of E. coli, with the GFs subsequently highly purified and maintaining their biological activity. Hence, the small protein 6HFh8 can be used for efficient mass-production of various GFs.


Sign in / Sign up

Export Citation Format

Share Document