scholarly journals Regulating SWI/SNF Subunit Levels via Protein-Protein Interactions and Proteasomal Degradation: BAF155 and BAF170 Limit Expression of BAF57

2005 ◽  
Vol 25 (20) ◽  
pp. 9016-9027 ◽  
Author(s):  
Jianguang Chen ◽  
Trevor K. Archer

ABSTRACT The mammalian SWI/SNF chromatin remodeling complex, whose function is of critical importance in transcriptional regulation, contains approximately 10 protein components. The expression levels of the core SWI/SNF subunits, including BRG1/Brm, BAF155, BAF170, BAF60, hSNF/Ini1, and BAF57, are stoichiometric, with few to no unbound molecules in the cell. Here we report that exogenous expression of the wild type or certain deletion mutants of BAF57, a key subunit that mediates the interaction between the remodeling complex and transcription factors, results in diminished expression of endogenous BAF57. This down-regulation process is mediated by an increase in proteasome-dependent degradation of the BAF57 protein. Furthermore, the protein levels of BAF155/170 dictate the maximum cellular amount of BAF57. We mapped the domains responsible for the interaction between BAF57 and BAF155 and demonstrated that protein-protein interactions between them play an important role in this regulatory process. These findings provide insights into the physiological mechanisms responsible for maintaining the proper stoichiometric levels of the protein components comprising multimeric enzyme complexes.

2019 ◽  
Author(s):  
Elizabeth A. Raupach ◽  
Krystine Garcia-Mansfield ◽  
Ritin Sharma ◽  
Apurva M. Hegde ◽  
Victoria David-Dirgo ◽  
...  

AbstractChromatin remodeling plays a critical role in tumor suppression as demonstrated by 20% of human cancers bearing inactivating mutations in SWI/SNF chromatin remodeling complex members. Mutations in different SWI/SNF subunits drive a variety of adult and pediatric tumor types, including non-small cell lung cancers, rhabdoid tumors, medulloblastomas, and ovarian cancers. Small cell carcinoma of the ovary hypercalcemic type (SCCOHT) is an aggressive subtype of ovarian cancer occurring in young women. Nearly all (>98%) SCCOHTs have inactivating mutations in SMARCA4, which encodes 1 of 2 mutually exclusive catalytic subunits of the SWI/SNF complex. Less than half of SCCOHT patients survive 5 years despite aggressive surgery and multimodal chemotherapy. Empirical support for effective SCCOHT treatments is scarce, in part because of the poor understanding of SCCOHT tumorigenesis. To gain insight into the functional consequences of SWI/SNF subunit loss, we defined SWI/SNF composition and its protein-protein interactions (PPIs) by immunoprecipitation and mass spectrometry (IP-MS) of SWI/SNF subunits in 3 SCCOHT cell lines. Comparing these results to a cell line containing a wild-type SWI/SNF complex, the interaction of most canonical core SWI/SNF subunits was observed in all SCCOHT cell lines at a lower abundance. The SCCOHT SWI/SNF also lacked ATPase module subunits and showed a drastic reduction in PBAF-specific subunit interactions. The wild-type and SCCOHT SWI/SNF subunits immunoprecipitated a shared set of 26 proteins, including core SWI/SNF subunits and RNA processing proteins. We observed 131 proteins exclusively interacting with the wild-type SWI/SNF complex including isoform-specific SWI/SNF subunits, members of the NuRD complex, and members of the MLL3/4 complex. We observed 60 PPIs exclusive to the SCCOHT residual SWI/SNF shared in at least 2 of the 3 SCCOHT cell lines, including many proteins involved in RNA processing. Differential interactions with the residual SWI/SNF complex in SCCOHT may further elucidate altered functional consequences of SMARCA4 mutations in these tumors as well as identify synthetic lethal targets that translate to other SWI/SNF-deficient tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oksana Sorokina ◽  
Colin Mclean ◽  
Mike D. R. Croning ◽  
Katharina F. Heil ◽  
Emilia Wysocka ◽  
...  

AbstractGenes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein–protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.


1996 ◽  
Vol 132 (3) ◽  
pp. 359-370 ◽  
Author(s):  
E F Smith ◽  
P A Lefebvre

Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Yunyun Jin ◽  
Jinjin Xu ◽  
Meng-Xin Yin ◽  
Yi Lu ◽  
Lianxin Hu ◽  
...  

Chromatin remodeling processes are among the most important regulatory mechanisms in controlling cell proliferation and regeneration. Drosophila intestinal stem cells (ISCs) exhibit self-renewal potentials, maintain tissue homeostasis, and serve as an excellent model for studying cell growth and regeneration. In this study, we show that Brahma (Brm) chromatin-remodeling complex is required for ISC proliferation and damage-induced midgut regeneration in a lineage-specific manner. ISCs and enteroblasts exhibit high levels of Brm proteins; and without Brm, ISC proliferation and differentiation are impaired. Importantly, the Brm complex participates in ISC proliferation induced by the Scalloped–Yorkie transcriptional complex and that the Hippo (Hpo) signaling pathway directly restricted ISC proliferation by regulating Brm protein levels by inducing caspase-dependent cleavage of Brm. The cleavage resistant form of Brm protein promoted ISC proliferation. Our findings highlighted the importance of Hpo signaling in regulating epigenetic components such as Brm to control downstream transcription and hence ISC proliferation.


2000 ◽  
Vol 20 (23) ◽  
pp. 8879-8888 ◽  
Author(s):  
Zuqin Nie ◽  
Yutong Xue ◽  
Dafeng Yang ◽  
Sharleen Zhou ◽  
Bonnie J. Deroo ◽  
...  

ABSTRACT The SWI/SNF family of chromatin-remodeling complexes facilitates gene activation by assisting transcription machinery to gain access to targets in chromatin. This family includes BAF (also called hSWI/SNF-A) and PBAF (hSWI/SNF-B) from humans and SWI/SNF and Rsc fromSaccharomyces cerevisiae. However, the relationship between the human and yeast complexes is unclear because all human subunits published to date are similar to those of both yeast SWI/SNF and Rsc. Also, the two human complexes have many identical subunits, making it difficult to distinguish their structures or functions. Here we describe the cloning and characterization of BAF250, a subunit present in human BAF but not PBAF. BAF250 contains structural motifs conserved in yeast SWI1 but not in any Rsc components, suggesting that BAF is related to SWI/SNF. BAF250 is also a homolog of the Drosophila melanogaster Osa protein, which has been shown to interact with a SWI/SNF-like complex in flies. BAF250 possesses at least two conserved domains that could be important for its function. First, it has an AT-rich DNA interaction-type DNA-binding domain, which can specifically bind a DNA sequence known to be recognized by a SWI/SNF family-related complex at the β-globin locus. Second, BAF250 stimulates glucocorticoid receptor-dependent transcriptional activation, and the stimulation is sharply reduced when the C-terminal region of BAF250 is deleted. This region of BAF250 is capable of interacting directly with the glucocorticoid receptor in vitro. Our data suggest that BAF250 confers specificity to the human BAF complex and may recruit the complex to its targets through either protein-DNA or protein-protein interactions.


Author(s):  
Byung-Hoon Park ◽  
Phuongan Dam ◽  
Chongle Pan ◽  
Ying Xu ◽  
Al Geist ◽  
...  

Protein-protein interactions are fundamental to cellular processes. They are responsible for phenomena like DNA replication, gene transcription, protein translation, regulation of metabolic pathways, immunologic recognition, signal transduction, etc. The identification of interacting proteins is therefore an important prerequisite step in understanding their physiological functions. Due to the invaluable importance to various biophysical activities, reliable computational methods to infer protein-protein interactions from either structural or genome sequences are in heavy demand lately. Successful predictions, for instance, will facilitate a drug design process and the reconstruction of metabolic or regulatory networks. In this chapter, we review: (a) high-throughput experimental methods for identification of protein-protein interactions, (b) existing databases of protein-protein interactions, (c) computational approaches to predicting protein-protein interactions at both residue and protein levels, (d) various statistical and machine learning techniques to model protein-protein interactions, and (e) applications of protein-protein interactions in predicting protein functions. We also discuss intrinsic drawbacks of the existing approaches and future research directions.


2019 ◽  
Vol 21 (1) ◽  
pp. 125
Author(s):  
Francesca Troilo ◽  
Francesca Malagrinò ◽  
Lorenzo Visconti ◽  
Angelo Toto ◽  
Stefano Gianni

SH2 domains are protein domains that modulate protein–protein interactions through a specific interaction with sequences containing phosphorylated tyrosines. In this work, we analyze the folding pathway of the C-terminal SH2 domain of the p85 regulatory subunit of the protein PI3K, which presents a proline residue in a cis configuration in the loop between the βE and βF strands. By employing single and double jump folding and unfolding experiments, we demonstrate the presence of an on-pathway intermediate that transiently accumulates during (un)folding. By comparing the kinetics of folding of the wild-type protein to that of a site-directed variant of C-SH2 in which the proline was replaced with an alanine, we demonstrate that this intermediate is dictated by the peptidyl prolyl cis-trans isomerization. The results are discussed in the light of previous work on the effect of peptidyl prolyl cis-trans isomerization on folding events.


1995 ◽  
Vol 15 (4) ◽  
pp. 2252-2262 ◽  
Author(s):  
E K Shin ◽  
A Shin ◽  
C Paulding ◽  
B Schaffhausen ◽  
A S Yee

We have examined regulation of the E2F transcription factor during differentiation of muscle cells. E2F regulates many genes involved in growth control and is also the target of regulation by diverse cellular signals, including the RB family of growth suppressors (e.g., the retinoblastoma protein [RB], p107, and p130). The following aspects of E2F function and regulation during muscle differentiation were investigated: (i) protein-protein interactions, (ii) protein levels, (iii) phosphorylation of the E2F protein, and (iv) transcriptional activity. A distinct E2F complex was present in differentiated cells but not in undifferentiated cells. The p130 protein was a prominent component of the E2F complex associated with differentiation. In contrast, in undifferentiated cells, the p107 protein was the prominent component in one of three E2F complexes. In addition, use of a differentiation-defective muscle line provided genetic and biochemical evidence that quiescence and differentiation are separable events. Exclusive formation of the E2F-p130 complex did not occur in this differentiation-defective line; however, E2F complexes diagnostic of quiescence were readily apparent. Thus, sole formation of the E2F-p130 complex is a necessary event in terminal differentiation. Other changes in E2F function and regulation upon differentiation include decreased phosphorylation and increased repression by E2F. These observations suggest that the regulation of E2F function during terminal differentiation may proceed through differential interaction within the RB family and/or phosphorylation.


2007 ◽  
Vol 283 (3) ◽  
pp. 1257-1266 ◽  
Author(s):  
Athmane Teghanemt ◽  
Fabio Re ◽  
Polonca Prohinar ◽  
Richard Widstrom ◽  
Theresa L. Gioannini ◽  
...  

Potent mammalian cell activation by Gram-negative bacterial endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). TLR4 activation requires simultaneous binding of MD-2 to endotoxin (E) and the ectodomain of TLR4. We now describe mutants of recombinant human MD-2 that bind TLR4 and react with E·CD14 but do not support cellular responsiveness to endotoxin. The mutants F121A/K122A MD-2 and Y131A/K132A MD-2 react with E·CD14 only when co-expressed with TLR4. Single mutants K122A and K132A each react with E·CD14 ± TLR4 and promote TLR4-dependent cell activation by endotoxin suggesting that Phe121 and Tyr131 are needed for TLR4-independent transfer of endotoxin from CD14 to MD-2 and also needed for TLR4 activation by bound E·MD-2. The mutant F126A MD-2 reacts as well as wild-type MD-2 with E·CD14 ± TLR4. E·MD-2F126A binds TLR4 with high affinity (Kd ∼ 200 pm) but does not activate TLR4 and instead acts as a potent TLR4 antagonist, inhibiting activation of HEK/TLR4 cells by wild-type E·MD-2. These findings reveal roles of Phe121 and Tyr131 in TLR4-independent interactions of human MD-2 with E·CD14 and, together with Phe126, in activation of TLR4 by bound E·MD-2. These findings strongly suggest that the structural properties of E·MD-2, not E alone, determine agonist or antagonist effects on TLR4.


Sign in / Sign up

Export Citation Format

Share Document