scholarly journals Draft Genome Sequence of Escherichia coli UMB9246, Isolated from the Bladder of a Woman with Recurrent Urinary Tract Infection

2020 ◽  
Vol 9 (23) ◽  
Author(s):  
Mikalina Belmonte ◽  
Taylor Miller-Ensminger ◽  
Adelina Voukadinova ◽  
Alan J. Wolfe ◽  
Catherine Putonti

ABSTRACT Escherichia coli is a Gram-negative, motile, rod-shaped bacterium that causes the majority of uncomplicated urinary tract infections (UTIs). Here, we report the draft genome of E. coli strain UMB9246, an isolate from a woman with recurrent UTI.

2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Lucy Kemper ◽  
Taylor Miller-Ensminger ◽  
Adelina Voukadinova ◽  
Alan J. Wolfe ◽  
Catherine Putonti

Staphylococcus epidermidis is a Gram-positive bacterium that is resistant to many antibiotics. Here, we present the 2.5-Mb draft genome of S. epidermidis UMB7765, isolated from a voided urine sample from a female with recurrent urinary tract infections.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Nayara Helisandra Fedrigo ◽  
Josmar Mazucheli ◽  
James Albiero ◽  
Danielle Rosani Shinohara ◽  
Fernanda Gomes Lodi ◽  
...  

ABSTRACT Fosfomycin is widely used for the treatment of uncomplicated urinary tract infection (UTI), and it has recently been recommended that fosfomycin be used to treat infections caused by multidrug-resistant (MDR) Gram-negative bacilli. Whether urine acidification can improve bacterial susceptibility to fosfomycin oral dosing regimens has not been analyzed. The MIC of fosfomycin for 245 Gram-negative bacterial isolates, consisting of 158 Escherichia coli isolates and 87 Klebsiella isolates which were collected from patients with urinary tract infections, were determined at pH 6.0 and 7.0 using the agar dilution method. Monte Carlo simulation of the urinary fosfomycin area under the concentration-time curve (AUC) after a single oral dose of 3,000 mg fosfomycin and the MIC distribution were used to determine the probability of target attainment (PTA). Fosfomycin was effective against E. coli (MIC90 ≤ 16 μg/ml) but not against Klebsiella spp. (MIC90 > 512 μg/ml). Acidification of the environment increased the susceptibility of 71% of the bacterial isolates and resulted in a statistically significant decrease in bacterial survival. The use of a regimen consisting of a single oral dose of fosfomycin against an E. coli isolate with an MIC of ≤64 mg/liter was able to achieve a PTA of ≥90% for a target pharmacodynamic index (AUC/MIC) of 23 in urine; PTA was not achieved when the MIC was higher than 64 mg/liter. The cumulative fractions of the bacterial responses (CFR) were 99% and 55% against E. coli and Klebsiella spp., respectively, based on simulated drug exposure in urine with an acidic pH of 6.0. A decrease of the pH from 7.0 to 6.0 improved the PTA and CFR of the target pharmacodynamic index in both E. coli and Klebsiella isolates.


2018 ◽  
Vol 6 (11) ◽  
Author(s):  
Aixia Xu ◽  
Sarah Hertrich ◽  
David S. Needleman ◽  
Shiowshuh Sheen ◽  
Christopher Sommers

ABSTRACT Uropathogenic Escherichia coli serotype O4:H5 isolates (ATCC 700414, 700415, 700416, and 700417) were recovered from women with first-time urinary tract infections. Here, we report the draft genome sequences for these four E. coli isolates, which are currently being used to validate food safety processing technologies.


2020 ◽  
Vol 9 (23) ◽  
Author(s):  
Tanea Crawford ◽  
Taylor Miller-Ensminger ◽  
Adelina Voukadinova ◽  
Alan J. Wolfe ◽  
Catherine Putonti

ABSTRACT Here, we present the draft genome sequence of Escherichia coli UMB1353, isolated from a patient with a urinary tract infection. The sequence of this antibiotic-resistant E. coli strain contains one intact P2-like phage.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Reina Yamaji ◽  
Cindy R. Friedman ◽  
Julia Rubin ◽  
Joy Suh ◽  
Erika Thys ◽  
...  

ABSTRACT There is increasing evidence that retail food may serve as a source of Escherichia coli that causes community-acquired urinary tract infections, but the impact of this source in a community is not known. We conducted a prospective, population-based study in one community to examine the frequency of recovery of uropathogenic E. coli genotypes from retail meat samples. We analyzed E. coli isolates from consecutively collected urine samples of patients suspected to have urinary tract infections (UTIs) at a university-affiliated health service and retail meat samples from the same geographic region. We genotyped all E. coli isolates by multilocus sequence typing (MLST) and tested them for antimicrobial susceptibility. From 2016 to 2017, we cultured 233 E. coli isolates from 230 (21%) of 1,087 urine samples and 177 E. coli isolates from 120 (28%) of 427 retail meat samples. Urine samples contained 61 sequence types (STs), and meat samples had 95 STs; 12 STs (ST10, ST38, ST69, ST80, ST88, ST101, ST117, ST131, ST569, ST906, ST1844, and ST2562) were common to both. Thirty-five (81%) of 43 meat isolates among the 12 STs were from poultry. Among 94 isolates in the 12 STs, 26 (60%) of 43 retail meat isolates and 15 (29%) of 51 human isolates were pan-susceptible (P < 0.005). We found that 21% of E. coli isolates from suspected cases of UTIs belonged to STs found in poultry. Poultry may serve as a possible reservoir of uropathogenic E. coli (UPEC). Additional studies are needed to demonstrate transmission pathways of these UPEC genotypes and their food sources. IMPORTANCE Community-acquired urinary tract infection caused by Escherichia coli is one of the most common infectious diseases in the United States, affecting approximately seven million women and costing approximately 11.6 billion dollars annually. In addition, antibiotic resistance among E. coli bacteria causing urinary tract infection continues to increase, which greatly complicates treatment. Identifying sources of uropathogenic E. coli and implementing prevention measures are essential. However, the reservoirs of uropathogenic E. coli have not been well defined. This study demonstrated that poultry sold in retail stores may serve as one possible source of uropathogenic E. coli. This finding adds to a growing body of evidence that suggests that urinary tract infection may be a food-borne disease. More research in this area can lead to the development of preventive strategies to control this common and costly infectious disease.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


2013 ◽  
Vol 57 (11) ◽  
pp. 5197-5201 ◽  
Author(s):  
Katherine R. Ball ◽  
Francesca Sampieri ◽  
Manuel Chirino ◽  
Don L. Hamilton ◽  
Robert I. R. Blyth ◽  
...  

ABSTRACTA mouse model of cystitis caused by uropathogenicEscherichia coliwas used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenicE. coliinfection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenicE. coli.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2020 ◽  
Author(s):  
Mohammad Hasan Namaei ◽  
Hengameh Hamzei ◽  
Marzie Moghanni ◽  
Azadeh Ebrahimzadeh

Abstract Background: Urinary Tract Infection (UTI) is the most common bacterial infection in the world. E. coli is the predominant Pathogen. This study evaluates the prevalence of ESBL in E. colis isolated from patients with urinary tract infections with phenotypic and genotypic methods.Methods: This descriptive-analytical study was done on 155 isolates of E. coli isolated from patients with urinary tract infection who had received the study consent. After accurate identification of E. coli strains. ESBL production for Escherichia coli isolates which are resistant to ceftriaxone or ceftazidime was evaluated by CDT method. TEM, SHV and CTX-M genes were identified by PCR.Results: The results showed that 30 strains from 155 strains of E. coli had ESBL. Strains of ESBL producer were more in males was lower in educated persons. 38.9% of ESBL producer had antibiotic use, 29.9% -producing Escherichia hospitalization and 31.6% uti history. The highest level of drug allergy in the ESBL was related to nitrofurantoin, and the highest resistance was related to cefazolin, co-trimoxazole. The CTX-M and the CTX-M15 gene were found in 92.7% and 57.1% of cases, respectively; also the SHV and TEM genes were not found in any of ESBL-producing Escherichia coli strains. Most therapeutic response in patients was related to cefexime, ciprofloxacin and nitrofurantoin 27.4%, 26% 21.9%, respectively.Conclusion: This study showed that the history of antibiotic use, hospitalization, uti related to increase of ESBL-producing in E. coli isolates., the CTMX-M gene is the most common gene in ESBL-producing E. coli strains.


Sign in / Sign up

Export Citation Format

Share Document