scholarly journals The Basic Leucine Zipper Transcription Factor PlBZP32 Associated with the Oxidative Stress Response Is Critical for Pathogenicity of the Lychee Downy Blight Oomycete Peronophythora litchii

mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Guanghui Kong ◽  
Yubin Chen ◽  
Yizhen Deng ◽  
Dinan Feng ◽  
Liqun Jiang ◽  
...  

ABSTRACT Basic leucine zipper (bZIP) transcription factors are widespread in eukaryotes, including plants, animals, fungi, and oomycetes. However, the functions of bZIPs in oomycetes are rarely known. In this study, we identified a bZIP protein possessing a special bZIP-PAS structure in Peronophythora litchii, named PlBZP32. We found that PlBZP32 is upregulated in zoospores, in cysts, and during invasive hyphal growth. We studied the functions of PlBZP32 using the RNAi technique to suppress the expression of this gene. PlBZP32-silenced mutants were more sensitive to oxidative stress, showed a lower cyst germination rate, and produced more sporangia than the wild-type strain SHS3. The PlBZP32-silenced mutants were also less invasive on the host plant. Furthermore, we analyzed the activities of extracellular peroxidases and laccases and found that silencing PlBZP32 decreased the activities of P. litchii peroxidase and laccase. To our knowledge, this is the first report that the functions of a bZIP-PAS protein are associated with oxidative stress, asexual development, and pathogenicity in oomycetes. IMPORTANCE In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete.

2020 ◽  
Author(s):  
María Lopez-Delacalle ◽  
Christian J Silva ◽  
Teresa C Mestre ◽  
Vicente Martinez ◽  
Barbara Blanco-Ulate ◽  
...  

ABSTRACTAdverse environmental conditions have a devastating impact on plant productivity. In nature, multiple abiotic stresses occur simultaneously, and plants have evolved unique responses to cope against this combination of stresses. Here, we coupled genome-wide transcriptional profiling and untargeted metabolomics with physiological and biochemical analyses to characterize the effect of salinity and heat applied in combination on the metabolism of tomato plants. Our results demonstrate that this combination of stresses causes a unique reprogramming of metabolic pathways, including changes in the expression of 1,388 genes and the accumulation of 568 molecular features. Pathway enrichment analysis of transcript and metabolite data indicated that the proline and ascorbate pathways act synchronously to maintain cellular redox homeostasis, which was supported by measurements of enzymatic activity and oxidative stress markers. We also identified key transcription factors from the basic Leucine Zipper Domain (bZIP), Zinc Finger Cysteine-2/Histidine-2 (C2H2) and Trihelix families that are likely regulators of the identified up-regulated genes under salinity+heat combination. Our results expand the current understanding of how plants acclimate to environmental stresses in combination and unveils the synergy between key cellular metabolic pathways for effective ROS detoxification. Our study opens the door to elucidating the different signaling mechanisms for stress tolerance.HIGHLIGHTSThe combination of salinity and heat causes a unique reprogramming of tomato metabolic pathways by changing the expression of specific genes and metabolic features.Proline and ascorbate pathways act synchronously to maintain cellular redox homeostasisKey transcription factors from the basic Leucine Zipper Domain (bZIP), Zinc Finger Cysteine-2/Histidine-2 (C2H2) and Trihelix families were identified as putative regulators of the identified up-regulated genes under salinity and heat combination.


2020 ◽  
Vol 21 (18) ◽  
pp. 6973 ◽  
Author(s):  
Shiri Li ◽  
Natsuki Eguchi ◽  
Hien Lau ◽  
Hirohito Ichii

Obesity, a metabolic disorder characterized by excessive accumulation of adipose tissue, has globally become an increasingly prevalent disease. Extensive studies have been conducted to elucidate the underlying mechanism of the development of obesity. In particular, the close association of inflammation and oxidative stress with obesity has become increasingly evident. Obesity has been shown to exhibit augmented levels of circulating proinflammatory cytokines, which have been associated with the activation of pathways linked with inflammation-induced insulin resistance, a major pathological component of obesity and several other metabolic disorders. Oxidative stress, in addition to its role in stimulating adipose differentiation, which directly triggers obesity, is considered to feed into this pathway, further aggravating insulin resistance. Nuclear factor E2 related factor 2 (Nrf2) is a basic leucine zipper transcription factor that is activated in response to inflammation and oxidative stress, and responds by increasing antioxidant transcription levels. Therefore, Nrf2 has emerged as a critical new target for combating insulin resistance and subsequently, obesity. However, the effects of Nrf2 on insulin resistance and obesity are controversial. This review focuses on the current state of research on the interplay of inflammation and oxidative stress in obesity, the role of the Nrf2 pathway in obesity and insulin resistance, and the potential use of Nrf2 activators for the treatment of insulin resistance.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hyun-Ae Seo ◽  
In-Kyu Lee

Metabolic diseases, such as type 2 diabetes and obesity, are increasing globally, and much work has been performed to elucidate the regulatory mechanisms of these diseases. Nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper transcription factor that serves as a primary cellular defense against the cytotoxic effects of oxidative stress. Recent studies have proposed a close relationship between oxidative stress and energy metabolism-associated disease. The Nrf2 pathway, as a master regulator of cellular defense against oxidative stress, has emerged as a critical target of energy metabolism; however, its effects are controversial. This review examines the current state of research on the role of Nrf2 on energy metabolism, specifically with respect to its participation in adipocyte differentiation, obesity, and insulin resistance, and discusses the possibility of using Nrf2 as a therapeutic target in the clinic.


2013 ◽  
Vol 12 (10) ◽  
pp. 1403-1412 ◽  
Author(s):  
Heber Gamboa-Meléndez ◽  
Apolonio I. Huerta ◽  
Howard S. Judelson

ABSTRACT Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.


2021 ◽  
Vol 22 (21) ◽  
pp. 11577
Author(s):  
Bernadett Bákány ◽  
Wen-Bing Yin ◽  
Beatrix Dienes ◽  
Tibor Nagy ◽  
Éva Leiter ◽  
...  

Basic leucine zipper (bZIP) transcription factors play a crucial role in the environmental stress response of eukaryotes. In this work, we studied the effect of gene manipulations, including both deletions and overexpressions, of two selected bZIP transcription factors, NapA and RsmA, in the oxidative stress response and sterigmatocystin production of Aspergillus nidulans. We found that NapA was important in the oxidative stress response by negatively regulating intracellular reactive species production and positively regulating catalase activities, whereas RsmA slightly negatively regulated catalase activities. Concerning sterigmatocystin production, the highest concentration was measured in the ΔrsmAΔnapA double deletion mutant, but elevated sterigmatocystin production was also found in the OErsmA OEnapA strain. Our results indicate that NapA influences sterigmatocystin production via regulating reactive species level whereas RsmA modulates toxin production independently of the redox regulation of the cells.


Sign in / Sign up

Export Citation Format

Share Document