scholarly journals Functional Mapping of Transcription Factor Grf10 That Regulates Adenine-Responsive and Filamentation Genes inCandida albicans

mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Tanaporn Wangsanut ◽  
Joshua M. Tobin ◽  
Ronda J. Rolfes

ABSTRACTGrf10, a homeodomain-containing transcription factor, regulates adenylate and one-carbon metabolism and morphogenesis in the human fungal pathogenCandida albicans. Here, we identified functional domains and key residues involved in transcription factor activity using one-hybrid and mutational analyses. We localized activation domains to the C-terminal half of the Grf10 protein by one-hybrid analysis and identified motifs using bioinformatic analyses; one of the characterized activation domains (AD1) responded to temperature. The LexA-Grf10 fusion protein activated thelexAop-HIS1reporter in an adenine-dependent fashion, and this activation was independent of Bas1, showing that the adenine limitation signal is transmitted directly to Grf10. Overexpression of LexA-Grf10 led to filamentation, and this required a functioning homeodomain, consistent with Grf10 controlling the expression of key filamentation genes; filamentation induced by LexA-Grf10 overexpression was independent of adenine levels and Bas1. Alanine substitutions were made within the conserved interaction regions (IR) of LexA-Grf10 and Grf10 to investigate roles in transcription. In LexA-Grf10, the D302A mutation activated transcription constitutively, and the E305A mutation was regulated by adenine. When these mutations were introduced into the native gene locus, the D302A mutation was unable to complement the ADE phenotype and did not promote filamentation under hypha-inducing conditions; the E305A mutant behaved as the native gene with respect to the ADE phenotype and was partially defective in inducing hyphae. These results demonstrate allele-specific responses with respect to the different phenotypes, consistent with perturbations in the ability of Grf10 to interact with multiple partner proteins.IMPORTANCEMetabolic adaptation and morphogenesis are essential forCandida albicans, a major human fungal pathogen, to survive and infect diverse body sites in the mammalian host.C. albicansutilizes transcription factors to tightly control the transcription of metabolic genes and morphogenesis genes. Grf10, a critical homeodomain transcription factor, controls purine and one-carbon metabolism in response to adenine limitation, and Grf10 is necessary for the yeast-to-hypha morphological switching, a known virulence factor. Here, we carried out one-hybrid and mutational analyses to identify functional domains of Grf10. Our results show that Grf10 separately regulates metabolic and morphogenesis genes, and it contains a conserved protein domain for protein partner interaction, allowing Grf10 to control the transcription of multiple distinct pathways. Our findings contribute significantly to understanding the role and mechanism of transcription factors that control multiple pathogenic traits inC. albicans.

2014 ◽  
Vol 83 (2) ◽  
pp. 637-645 ◽  
Author(s):  
Shamoon Naseem ◽  
David Frank ◽  
James B. Konopka ◽  
Nick Carpino

The human fungal pathogenCandida albicanscauses invasive candidiasis, characterized by fatal organ failure due to disseminated fungal growth and inflammatory damage. Thesuppressor ofTCRsignaling 1 (Sts-1) and Sts-2 are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic cell lineages, including T lymphocytes, mast cells, and platelets. Functional inactivation of both Sts enzymes leads to profound resistance to systemic infection byC. albicans, such that greater than 80% of mice lacking Sts-1 and -2 survive a dose ofC. albicans(2.5 × 105CFU/mouse) that is uniformly lethal to wild-type mice within 10 days. Restriction of fungal growth within the kidney occurs by 24 h postinfection in the mutant mice. This occurs without induction of a hyperinflammatory response, as evidenced by the decreased presence of leukocytes and inflammatory cytokines that normally accompany the antifungal immune response. Instead, the absence of the Sts phosphatases leads to the rapid induction of a unique immunological environment within the kidney, as indicated by the early induction of a proinflammatory cytokine (CXL10). Mice lacking either Sts enzyme individually display an intermediate lethality phenotype. These observations identify an opportunity to optimize host immune responses toward a deadly fungal pathogen.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Henry Ng ◽  
Neta Dean

ABSTRACT Candida albicans is an important human fungal pathogen. An understanding of fungal virulence factors has been slow because C. albicans is genetically intractable. The recent development of CRISPR/Cas in C. albicans (V. K. Vyas, M. I. Barrasa, G. R. Fink, Sci Adv 1:e1500248, 2015, https://doi.org/10.1126/sciadv.1500248 ) has the potential to circumvent this problem. However, as has been found in other organisms, CRISPR/Cas mutagenesis efficiency can be frustratingly variable. Here, we systematically examined parameters hypothesized to alter sgRNA intracellular levels in order to optimize CRISPR/Cas in C. albicans. Our most important conclusion is that increased sgRNA expression and maturation dramatically improve efficiency of CRISPR/Cas mutagenesis in C. albicans by ~10-fold. Thus, we anticipate that the modifications described here will further advance the application of CRISPR/Cas for genome editing in C. albicans. The clustered regularly interspaced short palindromic repeat system with CRISPR-associated protein 9 nuclease (CRISPR/Cas9) has emerged as a versatile tool for genome editing in Candida albicans. Mounting evidence from other model systems suggests that the intracellular levels of single guide RNA (sgRNA) limit the efficiency of Cas9-dependent DNA cleavage. Here, we tested this idea and describe a new means of sgRNA delivery that improves previously described methods by ~10-fold. The efficiency of Cas9/sgRNA-dependent cleavage and repair of a single-copy yeast enhanced monomeric red fluorescent protein (RFP) gene was measured as a function of various parameters that are hypothesized to affect sgRNA accumulation, including transcriptional and posttranscriptional processing. We analyzed different promoters (SNR52, ADH1, and tRNA), as well as different posttranscriptional RNA processing schemes that serve to generate or stabilize mature sgRNA with precise 5′ and 3′ ends. We compared the effects of flanking sgRNA with self-cleaving ribozymes or by tRNA, which is processed by endogenous RNases. These studies demonstrated that sgRNA flanked by a 5′ tRNA and transcribed by a strong RNA polymerase II ADH1 promoter increased Cas9-dependent RFP mutations by 10-fold. Examination of double-strand-break (DSB) repair in strains hemizygous for RFP demonstrated that both homology-directed and nonhomologous end-joining pathways were used to repair breaks. Together, these results support the model that gRNA expression can be rate limiting for efficient CRISPR/Cas mutagenesis in C. albicans. IMPORTANCE Candida albicans is an important human fungal pathogen. An understanding of fungal virulence factors has been slow because C. albicans is genetically intractable. The recent development of CRISPR/Cas in C. albicans (V. K. Vyas, M. I. Barrasa, G. R. Fink, Sci Adv 1:e1500248, 2015, https://doi.org/10.1126/sciadv.1500248 ) has the potential to circumvent this problem. However, as has been found in other organisms, CRISPR/Cas mutagenesis efficiency can be frustratingly variable. Here, we systematically examined parameters hypothesized to alter sgRNA intracellular levels in order to optimize CRISPR/Cas in C. albicans. Our most important conclusion is that increased sgRNA expression and maturation dramatically improve efficiency of CRISPR/Cas mutagenesis in C. albicans by ~10-fold. Thus, we anticipate that the modifications described here will further advance the application of CRISPR/Cas for genome editing in C. albicans.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Arielle Butts ◽  
Christian DeJarnette ◽  
Tracy L. Peters ◽  
Josie E. Parker ◽  
Morgan E. Kerns ◽  
...  

ABSTRACT Conventional drug screening typically employs either target-based or cell-based approaches. The first group rely on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second-generation target-based whole-cell screening approach that incorporates the principles of both chemical genetics and competitive fitness, which enables the identification of target-specific and physiologically active compounds from a single screen. We have chosen to validate this approach using the important human fungal pathogen Candida albicans with the intention of pursuing novel antifungal targets. However, this approach is broadly applicable and is expected to dramatically reduce the time and resources required to progress from screening hit to lead compound. Traditional approaches to drug discovery are frustratingly inefficient and have several key limitations that severely constrain our capacity to rapidly identify and develop novel experimental therapeutics. To address this, we have devised a second-generation target-based whole-cell screening assay based on the principles of competitive fitness, which can rapidly identify target-specific and physiologically active compounds. Briefly, strains expressing high, intermediate, and low levels of a preselected target protein are constructed, tagged with spectrally distinct fluorescent proteins (FPs), and pooled. The pooled strains are then grown in the presence of various small molecules, and the relative growth of each strain within the mixed culture is compared by measuring the intensity of the corresponding FP tags. Chemical-induced population shifts indicate that the bioactivity of a small molecule is dependent upon the target protein’s abundance and thus establish a specific functional interaction. Here, we describe the molecular tools required to apply this technique in the prevalent human fungal pathogen Candida albicans and validate the approach using two well-characterized drug targets—lanosterol demethylase and dihydrofolate reductase. However, our approach, which we have termed target abundance-based fitness screening (TAFiS), should be applicable to a wide array of molecular targets and in essentially any genetically tractable microbe. IMPORTANCE Conventional drug screening typically employs either target-based or cell-based approaches. The first group relies on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second-generation target-based whole-cell screening approach that incorporates the principles of both chemical genetics and competitive fitness, which enables the identification of target-specific and physiologically active compounds from a single screen. We have chosen to validate this approach using the important human fungal pathogen Candida albicans with the intention of pursuing novel antifungal targets. However, this approach is broadly applicable and is expected to dramatically reduce the time and resources required to progress from screening hit to lead compound.


2011 ◽  
Vol 55 (5) ◽  
pp. 2061-2066 ◽  
Author(s):  
Selene Mogavero ◽  
Arianna Tavanti ◽  
Sonia Senesi ◽  
P. David Rogers ◽  
Joachim Morschhäuser

ABSTRACTOverexpression of the multidrug efflux pump Mdr1 causes increased fluconazole resistance in the pathogenic yeastCandida albicans. The transcription factors Mrr1 and Cap1 mediateMDR1upregulation in response to inducing stimuli, and gain-of-function mutations in Mrr1 or Cap1, which render the transcription factors hyperactive, result in constitutiveMDR1overexpression. The essential MADS box transcription factor Mcm1 also binds to theMDR1promoter, but its role in inducible or constitutiveMDR1upregulation is unknown. Using a conditional mutant in which Mcm1 can be depleted from the cells, we investigated the importance of Mcm1 forMDR1expression. We found that Mcm1 was dispensable forMDR1upregulation by H2O2but was required for fullMDR1induction by benomyl. A C-terminally truncated, hyperactive Cap1 could upregulateMDR1expression both in the presence and in the absence of Mcm1. In contrast, a hyperactive Mrr1 containing a gain-of-function mutation depended on Mcm1 to causeMDR1overexpression. These results demonstrate a differential requirement for the coregulator Mcm1 for Cap1- and Mrr1-mediatedMDR1upregulation. When activated by oxidative stress or a gain-of-function mutation, Cap1 can induceMDR1expression independently of Mcm1, whereas Mrr1 requires either Mcm1 or an active Cap1 to cause overexpression of theMDR1efflux pump. Our findings provide more detailed insight into the molecular mechanisms of drug resistance in this important human fungal pathogen.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Prashant R. Desai ◽  
Klaus Lengeler ◽  
Mario Kapitan ◽  
Silas Matthias Janßen ◽  
Paula Alepuz ◽  
...  

ABSTRACTExtensive 5′ untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis inCandida albicans. The major transcripts of theEFG1gene, which are responsible for cellular morphogenesis and metabolism, contain a 5′ UTR of up to 1,170 nucleotides (nt). Deletion analyses of the 5′ UTR revealed a 218-nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of theEFG1transcript. Polysomal analyses revealed that the 218-nt 5′ UTR sequence is required for efficient translation of the Efg1 protein. Replacement of theEFG1open reading frame (ORF) by the heterologous reporter geneCaCBGlucconfirmed the positive regulatory importance of the identified 5′ UTR sequence. In contrast to other reported transcripts containing extensive 5′ UTR sequences, these results indicate the positive translational function of the 5′ UTR sequence in theEFG1transcript, which is observed in the context of the nativeEFG1promoter. It is proposed that the 5′ UTR recruits regulatory factors, possibly during emergence of the native transcript, which aid in translation of theEFG1transcript.IMPORTANCEMany of the virulence traits that makeCandida albicansan important human fungal pathogen are regulated on a transcriptional level. Here, we report an important regulatory contribution of translation, which is exerted by the extensive 5′ untranslated regulatory sequence (5′ UTR) of the transcript for the protein Efg1, which determines growth, metabolism, and filamentation in the fungus. The presence of the 5′ UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5′ UTR sequences, it appears that the virulence ofC. albicansdepends on the combination of transcriptional and translational regulatory mechanisms.


Author(s):  
Feng Yang ◽  
Hui Lu ◽  
Hao Wu ◽  
Ting Fang ◽  
Judith Berman ◽  
...  

Candida parapsilosis is an emerging major human fungal pathogen, especially in neonates. Aneuploidy, having uneven numbers of chromosomes, is a well-known mechanism for adapting to stress in Candida albicans , the most common human fungal pathogen.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yang-Nim Park ◽  
Kayla Conway ◽  
Thomas P. Conway ◽  
Karla J. Daniels ◽  
David R. Soll

ABSTRACTCandida albicansremains the most pervasive fungal pathogen colonizing humans. The majority of isolates from hosts are heterozygous at the mating type locus (MTLa/α), and a third of these have recently been shown to be capable of switching to the opaque phenotype. Here we have investigated the roles of two transcription factors (TFs) Sfl2 and Efg1, in repressing switching ina/α strains. Deleting either gene results in the capacity ofa/α cells to switch to opaque en masse under facilitating environmental conditions, which includeN-acetylglucosamine (GlcNAc) as the carbon source, physiological temperature (37°C), and high CO2(5%). These conditions are similar to those in the host. Our results further reveal that while glucose is a repressor ofsfl2Δ andefg1Δ switching, GlcNAc is an inducer. Finally, we show that when GlcNAc is the carbon source, and the temperature is low (25°C), theefg1Δ mutants, but not thesfl2Δ mutants, form a tiny, elongate cell, which differentiates into an opaque cell when transferred to conditions optimal fora/α switching. These results demonstrate that at least two TFs, Sfl2 and Efg1, repress switching ina/α cells and thata/α strains with either ansfl2Δ orefg1Δ mutation can switch en masse but only under physiological conditions. The role of opaquea/α cells in commensalism and pathogenesis must, therefore, be investigated.IMPORTANCEMore than 95% ofCandida albicansstrains isolated from humans areMTLa/α, and approximately a third of these can undergo the white-to-opaque transition. Therefore, besides being a requirement forMTL-homozygous strains to mate, the opaque phenotype very likely plays a role in the commensalism and pathogenesis of nonmating,a/α populations colonizing humans.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Isabel Miranda ◽  
Ana Silva-Dias ◽  
Rita Rocha ◽  
Rita Teixeira-Santos ◽  
Carolina Coelho ◽  
...  

ABSTRACT In the human fungal pathogen Candida albicans, the CUG codon is translated 97% of the time as serine and 3% of the time as leucine, which potentially originates an array of proteins resulting from the translation of a single gene. Genes encoding cell surface proteins are enriched in CUG codons; thus, CUG mistranslation may influence the interactions of the organism with the host. To investigate this, we compared a C. albicans strain that misincorporates 28% of leucine at CUGs with a wild-type parental strain. The first strain displayed increased adherence to inert and host molecules. In addition, it was less susceptible to phagocytosis by murine macrophages, probably due to reduced exposure of cell surface β-glucans. To prove that these phenotypes occurred due to serine/leucine exchange, the C. albicans adhesin and invasin ALS3 was expressed in Saccharomyces cerevisiae in its two natural isoforms (Als3p-Leu and Als3p-Ser). The cells with heterologous expression of Als3p-Leu showed increased adherence to host substrates and flocculation. We propose that CUG mistranslation has been maintained during the evolution of C. albicans due to its potential to generate cell surface variability, which significantly alters fungus-host interactions. IMPORTANCE The translation of genetic information into proteins is a highly accurate cellular process. In the human fungal pathogen Candida albicans, a unique mistranslation event involving the CUG codon occurs. The CUG codon is mainly translated as serine but can also be translated as leucine. Leucine and serine are two biochemically distinct amino acids, hydrophobic and hydrophilic, respectively. The increased rate of leucine incorporation at CUG decoding triggers C. albicans virulence attributes, such as morphogenesis, phenotypic switching, and adhesion. Here, we show that CUG mistranslation masks the fungal cell wall molecule β-glucan that is normally recognized by the host immune system, delaying its response. Furthermore, we demonstrate that two different proteins of the adhesin Als3 generated by CUG mistranslation confer increased hydrophobicity and adhesion ability on yeast cells. Thus, CUG mistranslation functions as a mechanism to create protein diversity with differential activities, constituting an advantage for a mainly asexual microorganism. This could explain its preservation during evolution.


mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Yumnam Priyadarshini ◽  
Krishnamurthy Natarajan

ABSTRACT Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions of nutrient deprivation regulate lysine biosynthesis in the human fungal pathogen Candida albicans. We show that although both Saccharomyces cerevisiae and C. albicans respond to lysine deprivation by transcriptional upregulation of lysine biosynthesis, the regulatory factors required for this control have been reconfigured in these species. We found that Gcn4 is an essential and direct transcriptional regulator of the expression of lysine biosynthetic genes under lysine starvation conditions in C. albicans. Our results therefore suggest that the regulation of the lysine biosynthetic pathway in Candida clade genomes involves gain of function by the master transcriptional regulator Gcn4, coincident with the neofunctionalization of the S. cerevisiae pathway-specific regulator Lys14. Evolution of transcriptional control is essential for organisms to cope with diversification into a spectrum of environments, including environments with limited nutrients. Lysine biosynthesis in fungi occurs in eight enzymatic steps. In Saccharomyces cerevisiae, amino acid starvation elicits the induction of LYS gene expression, mediated by the master regulator Gcn4 and the pathway-specific transcriptional regulator Lys14. Here, we have shown that the activation of LYS gene expression in the human fungal pathogen Candida albicans is predominantly controlled by Gcn4 under amino acid starvation conditions. Multiple lines of study showed that the four C. albicans LYS14-like genes have no role in the regulation of lysine biosynthesis. Whereas Gcn4 is dispensable for the growth of S. cerevisiae under lysine deprivation conditions, it is an essential regulator required for the growth of C. albicans under these conditions, as gcn4 deletion caused lysine auxotrophy. Gcn4 is required for the induction of increased LYS2 and LYS9 mRNA but not for the induction of increased LYS4 mRNA. Under lysine or isoleucine-valine deprivation conditions, Gcn4 recruitment to LYS2 and LYS9 promoters was induced in C. albicans. Indeed, in contrast to the S. cerevisiae LYS gene promoters, all LYS gene promoters in C. albicans harbored a Gcn4 binding site but not all harbored the S. cerevisiae Lys14 binding site, indicating the evolutionary divergence of cis-regulatory motifs. Thus, the transcriptional rewiring of the lysine biosynthetic pathway in C. albicans involves not only neofunctionalization of the four LYS14-like genes but the attendant strengthening of control by Gcn4, indicating a coordinated response with a much broader scope for control of amino acid biosynthesis in this human pathogen. IMPORTANCE Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions of nutrient deprivation regulate lysine biosynthesis in the human fungal pathogen Candida albicans. We show that although both Saccharomyces cerevisiae and C. albicans respond to lysine deprivation by transcriptional upregulation of lysine biosynthesis, the regulatory factors required for this control have been reconfigured in these species. We found that Gcn4 is an essential and direct transcriptional regulator of the expression of lysine biosynthetic genes under lysine starvation conditions in C. albicans. Our results therefore suggest that the regulation of the lysine biosynthetic pathway in Candida clade genomes involves gain of function by the master transcriptional regulator Gcn4, coincident with the neofunctionalization of the S. cerevisiae pathway-specific regulator Lys14.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Matthew Zack Anderson

ABSTRACT Matt Anderson works in the field of genetics and infectious disease, with a focus on the human fungal pathogen Candida albicans. In this mSphere of Influence article, he reflects on how two papers, “Gene Flow Contributes to Diversification of the Major Fungal Pathogen Candida albicans” (J. Ropars, C. Maufrais, D. Diogo, M. Marcet-Houben, A. Perin, et al., Nat Commun 9:2253, 2018, https://doi.org/10.1038/s41467-018-04787-4) and “Selection of Candida albicans Trisomy during Oropharyngeal Infection Results in a Commensal-Like Phenotype” (A. Forche, N. V. Solis, M. Swidergall, R. Thomas, A. Guyer, et al., PLoS Genet 15:e1008137, 2019, https://doi.org/10.1371/journal.pgen.1008137), made an impact on him by incorporating less commonly investigated mechanisms of genome evolution into the context of microbial adaptation.


Sign in / Sign up

Export Citation Format

Share Document