scholarly journals Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Sabina Leanti La Rosa ◽  
Vasiliki Kachrimanidou ◽  
Fanny Buffetto ◽  
Phillip B. Pope ◽  
Nicholas A. Pudlo ◽  
...  

The architecture of the gut bacterial ecosystem has a profound effect on the physiology and well-being of the host. Modulation of the gut microbiota and the intestinal microenvironment via administration of prebiotics represents a valuable strategy to promote host health. This work provides insights into the ability of two novel wood-derived preparations, AcGGM and AcAGX, to influence human gut microbiota composition and activity. These compounds were selectively fermented by commensal bacteria such as Bifidobacterium, Bacteroides-Prevotella, F. prausnitzii, and clostridial cluster IX spp. This promoted the microbial synthesis of acetate, propionate, and butyrate, which are beneficial to the microbial ecosystem and host colonic epithelial cells. Thus, our results demonstrate potential prebiotic properties for both AcGGM and AcAGX from lignocellulosic feedstocks. These findings represent pivotal requirements for rationally designing intervention strategies based on the dietary supplementation of AcGGM and AcAGX to improve or restore gut health.

2019 ◽  
Author(s):  
Robin Mesnage ◽  
Franziska Grundler ◽  
Andreas Schwiertz ◽  
Yvon Le Maho ◽  
Françoise Wilhelmi de Toledo

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


2021 ◽  
Vol 84 ◽  
pp. 104596
Author(s):  
Benjamín Vázquez-Rodríguez ◽  
Liliana Santos-Zea ◽  
Erick Heredia-Olea ◽  
Laura Acevedo-Pacheco ◽  
Arlette Santacruz ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1763
Author(s):  
Veronica Di Cristanziano ◽  
Fedja Farowski ◽  
Federica Berrilli ◽  
Maristella Santoro ◽  
David Di Cave ◽  
...  

Background: The human gut microbiota is a microbial ecosystem contributing to the maintenance of host health with functions related to immune and metabolic aspects. Relations between microbiota and enteric pathogens in sub-Saharan Africa are scarcely investigated. The present study explored gut microbiota composition associated to the presence of common enteric pathogens and commensal microorganisms, e.g., Blastocystis and Entamoeba species, in children and adults from semi-urban and non-urban localities in Côte d’Ivoire. Methods: Seventy-six stool samples were analyzed for microbiota composition by 16S rRDNA sequencing. The presence of adeno-, entero-, parechoviruses, bacterial and protozoal pathogens, Blastocystis, and commensal Entamoeba species, was analyzed by different molecular assays. Results: Twelve individuals resulted negative for any tested microorganisms, 64 subjects were positive for one or more microorganisms. Adenovirus, enterovirus, enterotoxigenic Escherichia coli (ETEC), and Blastocystis were frequently detected. Conclusions: The bacterial composition driven by Prevotellaceae and Ruminococcaceae confirmed the biotype related to the traditional dietary and cooking practices in low-income countries. Clear separation in UniFrac distance in subjects co-harboring Entamoeba hartmanni and Blastocystis was evidenced. Alpha diversity variation in negative control group versus only Blastocystis positive suggested its possible regulatory contribution on intestinal microbiota. Pathogenic bacteria and virus did not affect the positive outcome of co-harbored Blastocystis.


2021 ◽  
Vol 70 (7) ◽  
pp. 5-10
Author(s):  
K.A. Aitbaev ◽  
I.T. Murkamilov ◽  
V.V. Fomin ◽  
Zh.A. Murkamilova ◽  
I.O. Kudaibergenova ◽  
...  

2016 ◽  
Vol 7 (9) ◽  
pp. 4048-4060 ◽  
Author(s):  
Giuseppina Mandalari ◽  
Simona Chessa ◽  
Carlo Bisignano ◽  
Luisa Chan ◽  
Arianna Carughi

Modulation of the human gut microbiota has proven to have beneficial effects on host health. Sun-dried raisins exhibited prebiotic potential.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Sophie Marre ◽  
Cyrielle Gasc ◽  
Camille Forest ◽  
Yacine Lebbaoui ◽  
Pascale Mosoni ◽  
...  

Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales , 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.


2021 ◽  
Author(s):  
Ana S Luis ◽  
Arnaud Basle ◽  
Dominic P Byrne ◽  
Gareth SA Wright ◽  
James London ◽  
...  

The vast microbial community that resides in the human colon, termed the human gut microbiota, performs important roles in maintaining host health. Sulfated host glycans comprise both a major nutrient source and important colonisation factors for this community. Carbohydrate sulfatases remove sulfate groups from glycans and are essential in many bacteria for the utilisation of sulfated host glycans. Additionally, carbohydrate sulfatases are also implicated in numerous host diseases, but remain some of the most understudied carbohydrate active enzymes to date, especially at the structural and molecular level. In this work, we analyse 7 carbohydrate sulfatases, spanning 4 subfamilies, from the human gut symbiont Bacteroides thetaiotaomicron, a major utiliser of sulfated host glycans, correlating structural and functional data with phylogenetic and environmental analyses. Together, these data begin to fill the knowledge gaps in how carbohydrate sulfatases orchestrate sulfated glycan metabolism within their environment.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Laura Markey ◽  
Antonia Pugliese ◽  
Theresa Tian ◽  
Farrah Roy ◽  
Kyongbum Lee ◽  
...  

ABSTRACT The mammalian gut microbiota is a complex community of microorganisms which typically exhibits remarkable stability. As the gut microbiota has been shown to affect many aspects of host health, the molecular keys to developing and maintaining a “healthy” gut microbiota are highly sought after. Yet, the qualities that define a microbiota as healthy remain elusive. We used the ability to resist change in response to antibiotic disruption, a quality we refer to as ecological resistance, as a metric for the health of the bacterial microbiota. Using a mouse model, we found that colonization with the commensal fungus Candida albicans decreased the ecological resistance of the bacterial microbiota in response to the antibiotic clindamycin such that increased microbiota disruption was observed in C. albicans-colonized mice compared to that in uncolonized mice. C. albicans colonization resulted in decreased alpha diversity and small changes in abundance of bacterial genera prior to clindamycin challenge. Strikingly, co-occurrence network analysis demonstrated that C. albicans colonization resulted in sweeping changes to the co-occurrence network structure, including decreased modularity and centrality and increased density. Thus, C. albicans colonization resulted in changes to the bacterial microbiota community and reduced its ecological resistance. IMPORTANCE Candida albicans is the most common fungal member of the human gut microbiota, yet its ability to interact with and affect the bacterial gut microbiota is largely uncharacterized. Previous reports showed limited changes in microbiota composition as defined by bacterial species abundance as a consequence of C. albicans colonization. We also observed only a few bacterial genera that were significantly altered in abundance in C. albicans-colonized mice; however, C. albicans colonization significantly changed the structure of the bacterial microbiota co-occurrence network. Additionally, C. albicans colonization changed the response of the bacterial microbiota ecosystem to a clinically relevant perturbation, challenge with the antibiotic clindamycin.


2019 ◽  
Vol 86 (2) ◽  
Author(s):  
Yafei Liu ◽  
Anne-Louise Heath ◽  
Barbara Galland ◽  
Nancy Rehrer ◽  
Lynley Drummond ◽  
...  

ABSTRACT Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. IMPORTANCE This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Sign in / Sign up

Export Citation Format

Share Document