scholarly journals Homologous Recombination in Clostridioides difficile Mediates Diversification of Cell Surface Features and Transport Systems

mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Hannah D. Steinberg ◽  
Evan S. Snitkin

ABSTRACT Illness caused by the pathogen Clostridioides difficile is widespread and can range in severity from mild diarrhea to sepsis and death. Strains of C. difficile isolated from human infections exhibit great genetic diversity, leading to the hypothesis that the genetic background of the infecting strain at least partially determines a patient’s clinical course. However, although certain strains of C. difficile have been suggested to be associated with increased severity, strain typing alone has proved insufficient to explain infection severity. The limited explanatory power of strain typing has been hypothesized to be due to genetic variation within strain types, as well as genetic elements shared between strain types. Homologous recombination is an evolutionary mechanism that can result in large genetic differences between two otherwise clonal isolates, and also lead to convergent genotypes in distantly related strains. More than 400 C. difficile genomes were analyzed here to assess the effect of homologous recombination within and between C. difficile clades. Almost three-quarters of single nucleotide variants in the C. difficile phylogeny are predicted to be due to homologous recombination events. Furthermore, recombination events were enriched in genes previously reported to be important to virulence and host-pathogen interactions, such as flagella, cell wall proteins, and sugar transport and metabolism. Thus, by exploring the landscape of homologous recombination in C. difficile, we identified genetic loci whose elevated rates of recombination mediated diversification, making them strong candidates for being mediators of host-pathogen interaction in diverse strains of C. difficile. IMPORTANCE Infections with C. difficile result in up to half a million illnesses and tens of thousands of deaths annually in the United States. The severity of C. difficile illness is dependent on both host and bacterial factors. Studying the evolutionary history of C. difficile pathogens is important for understanding the variation in pathogenicity of these bacteria. This study examines the extent and targets of homologous recombination, a mechanism by which distant strains of bacteria can share genetic material, in hundreds of C. difficile strains and identifies hot spots of realized recombination events. The results of this analysis reveal the importance of homologous recombination in the diversification of genetic loci in C. difficile that are significant in its pathogenicity and host interactions, such as flagellar construction, cell wall proteins, and sugar transport and metabolism.

mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

ABSTRACT Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR′ (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI. However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile. IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


2015 ◽  
Vol 14 (8) ◽  
pp. 783-791 ◽  
Author(s):  
Yuke Cen ◽  
Alessandro Fiori ◽  
Patrick Van Dijck

ABSTRACTCandida glabratais reported as the second most prevalent human opportunistic fungal pathogen in the United States. Over the last decades, its incidence increased, whereas that ofCandida albicansdecreased slightly. One of the main reasons for this shift is attributed to the inherent tolerance ofC. glabratatoward the commonly used azole antifungal drugs. Despite a close phylogenetic distance toSaccharomyces cerevisiae, homologous recombination works with poor efficiency inC. glabratacompared to baker's yeast, in fact limiting targeted genetic alterations of the pathogen's genome. It has been shown that nonhomologous DNA end joining is dominant over specific gene targeting inC. glabrata. To improve the homologous recombination efficiency, we have generated a strain in which theLIG4gene has been deleted, which resulted in a significant increase in correct gene targeting. The very specific function of Lig4 in mediating nonhomologous end joining is the reason for the absence of clear side effects, some of which affect theku80mutant, another mutant with reduced nonhomologous end joining. We also generated aLIG4reintegration cassette. Our results show that thelig4mutant strain may be a valuable tool for theC. glabrataresearch community.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Mayuresh M. Abhyankar ◽  
Jennie Z. Ma ◽  
Kenneth W. Scully ◽  
Andrew J. Nafziger ◽  
Alyse L. Frisbee ◽  
...  

ABSTRACT There is a pressing need for biomarker-based models to predict mortality from and recurrence of Clostridioides difficile infection (CDI). Risk stratification would enable targeted interventions such as fecal microbiota transplant, antitoxin antibodies, and colectomy for those at highest risk. Because severity of CDI is associated with the immune response, we immune profiled patients at the time of diagnosis. The levels of 17 cytokines in plasma were measured in 341 CDI inpatients. The primary outcome of interest was 90-day mortality. Increased tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), C-C motif chemokine ligand 5 (CCL-5), suppression of tumorigenicity 2 receptor (sST-2), IL-8, and IL-15 predicted mortality by univariate analysis. After adjusting for demographics and clinical characteristics, the mortality risk (as indicated by the hazard ratio [HR]) was higher for patients in the top 25th percentile for TNF-α (HR = 8.35, P = 0.005) and IL-8 (HR = 4.45, P = 0.01) and lower for CCL-5 (HR = 0.18, P ≤ 0.008). A logistic regression risk prediction model was developed and had an area under the receiver operating characteristic curve (AUC) of 0.91 for 90-day mortality and 0.77 for 90-day recurrence. While limited by being single site and retrospective, our work resulted in a model with a substantially greater predictive ability than white blood cell count. In conclusion, immune profiling demonstrated differences between patients in their response to CDI, offering the promise for precision medicine individualized treatment. IMPORTANCE Clostridioides difficile infection is the most common health care-associated infection in the United States with more than 20% patients experiencing symptomatic recurrence. The complex nature of host-bacterium interactions makes it difficult to predict the course of the disease based solely on clinical parameters. In the present study, we built a robust prediction model using representative plasma biomarkers and clinical parameters for 90-day all-cause mortality. Risk prediction based on immune biomarkers and clinical variables may contribute to treatment selection for patients as well as provide insight into the role of immune system in C. difficile pathogenesis.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Mahmoud M. Saleh ◽  
William A. Petri

ABSTRACT Clostridioides (formerly known as Clostridium) difficile is the leading cause of hospital-acquired gastrointestinal infections in the United States and one of three urgent health care threats identified by the Centers for Disease Control and Prevention. C. difficile disease is mediated by the production of toxins that disrupt the epithelial barrier and cause a robust host inflammatory response. Studies in humans as well as animal models of disease have shown that the type of immune response generated against the infection dictates the outcome of disease, often irrespective of bacterial burden. Much of the focus on immunity during C. difficile infection (CDI) has been on type 3 immunity because of the established role for this arm of the immune system in other gastrointestinal inflammatory conditions such as inflammatory bowel disease (IBD). For example, interleukin-22 (IL-22) production by group 3 innate lymphoid cells (ILC3s) protects against pathobionts translocating across the epithelium during CDI. On the other hand, interleukin-17 (IL-17) production by Th17 cells increases CDI-associated mortality. Additionally, neutropenia has been associated with increased susceptibility to CDI in humans, but increased neutrophilia in mouse models correlates with host pathology. Taking the data together, these findings suggest dual roles for type 3 immune responses during infection. Here, we review the complex role of type 3 immunity during CDI and delineate what is known about innate and adaptive cellular immunity as well as the downstream effector cytokines known to be important during this infection.


2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Stefan Juretschko ◽  
Ryhana Manji ◽  
Reeti Khare ◽  
Shubhagata Das ◽  
Sherry Dunbar

ABSTRACT Clostridioides difficile infection (CDI) remain a serious issue in the United States. Fast and accurate diagnosis of CDI is paramount to achieve immediate infection control initiation, triaging, and isolation, as well as appropriate antibiotic treatment. However, both, over- and underdiagnosis can lead to adverse patient outcomes, such as unnecessary administration of antibiotics or unwanted spread of spores in any hospital setting, respectively. In this prospective study, we evaluated the FDA-cleared Aries C. difficile assay and compared its performance and workflow characteristics to those of the BD Max Cdiff and Xpert C. difficile/Epi assays. Out of 302 samples tested, 55 (18.2%) samples were positive, and 234 (77.5%) samples were negative for C. difficile by all three testing methods. Comparison results showed a positive and negative percent agreement (PPA and NPA, respectively) between the Aries and Xpert assays of 95.2% (59/62) and 99.2% (238/240), respectively. The PPA and NPA between the Aries and BD Max assays were 91.8% (56/61) and 96.6% (230/238), respectively. Invalid result rates were determined to be 2.6% for the BD Max assay, 1.0% for the Aries assay, and 0% for the Xpert assay. Hands-on time (HoT) and total turnaround time (TAT) varied considerably depending on the sample number and instrument throughput. The HoT ranged from 1.2 to 3.5 min per sample, and the TAT was 1 to 2.3 h. Overall, the results demonstrated that the Aries assay is a rapid and sensitive method for the diagnosis of CDI in clinical laboratories.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Jun Taek Oh ◽  
Cara Cassino ◽  
Raymond Schuch

ABSTRACTCF-301 (exebacase) is a recombinantly produced bacteriophage-derived lysin (cell wall hydrolase) and is the first agent of this class to enter clinical development in the United States for treating bacteremia including endocarditis due toStaphylococcus aureus. Whereas rapid bactericidal activity is the hallmarkin vitroandin vivoresponse to CF-301 at exposures higher than the MIC, prolonged antimicrobial activity, mediated by cell wall damage, is predicted at concentrations less than the MIC. In the current study, a series ofin vitropharmacodynamic parameters, including the postantibiotic effect (PAE), postantibiotic sub-MIC effect (PA-SME), and sub-MIC effect (SME), were studied to determine how short-duration and sub-MIC CF-301 exposures affect the growth of surviving staphylococci and extend its antimicrobial activity. Mean PAE, PA-SME, and SME values up to 4.8, 9.3, and 9.8 h, respectively, were observed against 14 staphylococcal strains tested in human serum; growth delays were extended by 6 h in the presence of daptomycin. Exposures to CF-301 at sub-MIC levels as low as 0.001× to 0.01× MIC (∼1 to 10 ng/ml) resulted in aberrant cell wall ultrastructure, increased membrane permeability, dissipation of membrane potential, and inhibition of virulence phenotypes, including agglutination and biofilm formation. A mouse thigh infection model designed to study the PAE was used to confirm our findings and demonstratein vivogrowth delays of ≥19.3 h. Our findings suggest that at CF-301 concentrations less than the MIC during therapeutic use, sustained reductions in bacterial fitness and virulence may substantially enhance efficacy.


2016 ◽  
Vol 198 (15) ◽  
pp. 2029-2042 ◽  
Author(s):  
Matthew G. Percy ◽  
Eleni Karinou ◽  
Alexander J. Webb ◽  
Angelika Gründling

ABSTRACTListeria monocytogenesis a foodborne Gram-positive bacterial pathogen, and many of its virulence factors are either secreted proteins or proteins covalently or noncovalently attached to the cell wall. Previous work has indicated that noncovalently attached proteins with GW (glycine-tryptophan) domains are retained in the cell wall by binding to the cell wall polymer lipoteichoic acid (LTA). LTA is a glycerol phosphate polymer, which is modified inL. monocytogeneswith galactose andd-alanine residues. We identified Lmo0933 as the cytoplasmic glycosyltransferase required for the LTA glycosylation process and renamed the protein GtlA, forglycosyltransferaseLTAA. UsingL. monocytogenesmutants lacking galactose ord-alanine modifications or the complete LTA polymer, we show that GW domain proteins are retained within the cell wall, indicating that other cell wall polymers are involved in the retention of GW domain proteins. Further experiments revealed peptidoglycan as the binding receptor as a purified GW domain fusion protein can bind toL. monocytogenescells lacking wall teichoic acid (WTA) as well as purified peptidoglycan derived from a wild-type or WTA-negative strain. With this, we not only identify the first enzyme involved in the LTA glycosylation process, but we also provide new insight into the binding mechanism of noncovalently attached cell wall proteins.IMPORTANCEOver the past 20 years, a large number of bacterial genome sequences have become available. Computational approaches are used for the genome annotation and identification of genes and encoded proteins. However, the function of many proteins is still unknown and often cannot be predicted bioinformatically. Here, we show that the previously uncharacterizedListeria monocytogenesgenelmo0933likely codes for a glycosyltransferase required for the decoration of the cell wall polymer lipoteichoic acid (LTA) with galactose residues. UsingL. monocytogenesmutants lacking LTA modifications or the complete polymer, we show that specific cell wall proteins, often associated with virulence, are retained within the cell wall, indicating that additional cell wall polymers are involved in their retention.


2013 ◽  
Vol 79 (18) ◽  
pp. 5519-5526 ◽  
Author(s):  
Li Zhang ◽  
Shuli Liang ◽  
Xinying Zhou ◽  
Zi Jin ◽  
Fengchun Jiang ◽  
...  

ABSTRACTGlycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different usesin vitro. In the present study, the genome ofPichia pastorisGS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and matureCandida antarcticalipase B (CALB). The expression of fusion proteins on the cell surface ofP. pastorisGS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface ofP. pastorisGS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis ofp-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins inP. pastorisGS115, which can be used to display heterologous proteins on the yeast cell surface.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Kurt Selle ◽  
Joshua R. Fletcher ◽  
Hannah Tuson ◽  
Daniel S. Schmitt ◽  
Lana McMillan ◽  
...  

ABSTRACT Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms. IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease.


2015 ◽  
Vol 14 (8) ◽  
pp. 792-803 ◽  
Author(s):  
Jie Ao ◽  
Jennifer L. Chinnici ◽  
Abhiram Maddi ◽  
Stephen J. Free

ABSTRACTA biochemical pathway for the incorporation of cell wall protein into the cell wall ofNeurospora crassawas recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into theCandida albicanscell wall. Using endoglycosidases, we show thatC. albicanscell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into theC. albicanscell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into theC. albicanscell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix.


Sign in / Sign up

Export Citation Format

Share Document