scholarly journals Bacterial Epigenomics: Coming of Age

mSystems ◽  
2021 ◽  
Author(s):  
Pedro H. Oliveira

Epigenetic DNA methylation in bacteria has been traditionally studied in the context of antiparasitic defense and as part of the innate immune discrimination between self and nonself DNA. However, sequencing advances that allow genome-wide analysis of DNA methylation at the single-base resolution are nowadays expanding and have propelled a modern epigenomic revolution in our understanding of the extent, evolution, and physiological significance of methylation.

2022 ◽  
Vol 34 (2) ◽  
pp. 290
Author(s):  
M. Moura ◽  
C. Carvalho ◽  
F. de Barros ◽  
F. Mossa ◽  
D. Bebbere ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Binhua Tang

Intercellular crosstalk effects between DNA methylation and lncRNA regulation remain elusive in lung carcinoma epigenetics. We present an application toolkit MetLnc in integration and annotation for group-wise NSCLC tissue-based DNA methylation and lncRNA profiling resources, to comprehensively analyze differentially methylated loci and lncRNAs through genome-wide analysis. Together with multiple analytic functions, MetLnc acts as an efficient approach on epigenetic omics integration and interrogation. Via the benchmark with group-wise NSCLC tissue profiling and TCGA cohort resources, we study differentially methylated CpG loci and lncRNAs as meaningful clues for inferring crosstalk effects between DNA methylation and lncRNA regulation; together we conclude with investigated biomarkers for further epigenetics and clinical trial research.


2013 ◽  
Vol 42 (5) ◽  
pp. 2893-2905 ◽  
Author(s):  
Chunjing Bian ◽  
Xiaochun Yu

Abstract Ten-eleven translocation (TET) family enzymes convert 5-methylcytosine to 5-hydroxylmethylcytosine. However, the molecular mechanism that regulates this biological process is not clear. Here, we show the evidence that PGC7 (also known as Dppa3 or Stella) interacts with TET2 and TET3 both in vitro and in vivo to suppress the enzymatic activity of TET2 and TET3. Moreover, lacking PGC7 induces the loss of DNA methylation at imprinting loci. Genome-wide analysis of PGC7 reveals a consensus DNA motif that is recognized by PGC7. The CpG islands surrounding the PGC7-binding motifs are hypermethylated. Taken together, our study demonstrates a molecular mechanism by which PGC7 protects DNA methylation from TET family enzyme-dependent oxidation.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yalan Yang ◽  
Rong Zhou ◽  
Yulian Mu ◽  
Xinhua Hou ◽  
Zhonglin Tang ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Maroua Jalouli ◽  
Md. Ataur Rahman ◽  
Philippe Jeandet ◽  
...  

: Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can in turn induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.


2018 ◽  
Author(s):  
Jie Zhang ◽  
Massimo Cavallaro ◽  
Daniel Hebenstreit

Transcription of many genes in metazoans is subject to polymerase pausing, which corresponds to the transient arrest of transcriptionally engaged polymerase. It occurs mainly at promoter proximal regions and is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking.We present here an extension of PRO-seq, time variant PRO-seq (TV-PRO-seq), that allowed us to estimate genome-wide pausing times at single base resolution. Its application to human cells reveals that promoter proximal pausing is surprisingly short compared to other regions and displays an intricate pattern. We also find precisely conserved pausing profiles at tRNA and rRNA genes and identified DNA motifs associated with pausing time. Finally, we show how chromatin states reflect differences in pausing times.


2012 ◽  
Vol 13 (7) ◽  
pp. 8259-8272 ◽  
Author(s):  
Sumiyo Morita ◽  
Ryou-u Takahashi ◽  
Riu Yamashita ◽  
Atsushi Toyoda ◽  
Takuro Horii ◽  
...  

Author(s):  
Sandra Cortijo ◽  
René Wardenaar ◽  
Maria Colomé-Tatché ◽  
Frank Johannes ◽  
Vincent Colot

Sign in / Sign up

Export Citation Format

Share Document