106 Heat stress alters oocyte genome-wide DNA methylation patterns revealed at single base resolution

2022 ◽  
Vol 34 (2) ◽  
pp. 290
Author(s):  
M. Moura ◽  
C. Carvalho ◽  
F. de Barros ◽  
F. Mossa ◽  
D. Bebbere ◽  
...  
mSystems ◽  
2021 ◽  
Author(s):  
Pedro H. Oliveira

Epigenetic DNA methylation in bacteria has been traditionally studied in the context of antiparasitic defense and as part of the innate immune discrimination between self and nonself DNA. However, sequencing advances that allow genome-wide analysis of DNA methylation at the single-base resolution are nowadays expanding and have propelled a modern epigenomic revolution in our understanding of the extent, evolution, and physiological significance of methylation.


2016 ◽  
Vol 113 (50) ◽  
pp. E8106-E8113 ◽  
Author(s):  
Israel Ausin ◽  
Suhua Feng ◽  
Chaowei Yu ◽  
Wanlu Liu ◽  
Hsuan Yu Kuo ◽  
...  

DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wardah Mahmood ◽  
Lars Erichsen ◽  
Pauline Ott ◽  
Wolfgang A. Schulz ◽  
Johannes C. Fischer ◽  
...  

AbstractLINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


2017 ◽  
Vol 55 (1) ◽  
pp. 793-803 ◽  
Author(s):  
Wenbiao Xiao ◽  
Yuze Cao ◽  
Hongyu Long ◽  
Zhaohui Luo ◽  
Shuyu Li ◽  
...  

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


Herz ◽  
2017 ◽  
Vol 43 (7) ◽  
pp. 656-662 ◽  
Author(s):  
X. Wang ◽  
A.-H. Liu ◽  
Z.-W. Jia ◽  
K. Pu ◽  
K.-Y. Chen ◽  
...  

2018 ◽  
Author(s):  
Jie Zhang ◽  
Massimo Cavallaro ◽  
Daniel Hebenstreit

Transcription of many genes in metazoans is subject to polymerase pausing, which corresponds to the transient arrest of transcriptionally engaged polymerase. It occurs mainly at promoter proximal regions and is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking.We present here an extension of PRO-seq, time variant PRO-seq (TV-PRO-seq), that allowed us to estimate genome-wide pausing times at single base resolution. Its application to human cells reveals that promoter proximal pausing is surprisingly short compared to other regions and displays an intricate pattern. We also find precisely conserved pausing profiles at tRNA and rRNA genes and identified DNA motifs associated with pausing time. Finally, we show how chromatin states reflect differences in pausing times.


2018 ◽  
Author(s):  
Yi Jin Liew ◽  
Emily J. Howells ◽  
Xin Wang ◽  
Craig T. Michell ◽  
John A. Burt ◽  
...  

MainThe notion that intergenerational or transgenerational inheritance operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants1,2and metazoans1,3. Inheritance of DNA methylation provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations1–4. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals)4. Here, we demonstrate genome-wide intergenerational transmission of CpG methylation patterns from parents to sperm and larvae in a reef-building coral. We also show variation in hypermethylated genes in corals from distinct environments, indicative of responses to variations in temperature and salinity. These findings support a role of DNA methylation in the transgenerational inheritance of traits in corals, which may extend to enhancing their capacity to adapt to climate change.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shir Toubiana ◽  
Miriam Gagliardi ◽  
Mariarosaria Papa ◽  
Roberta Manco ◽  
Maty Tzukerman ◽  
...  

DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.


Sign in / Sign up

Export Citation Format

Share Document