scholarly journals Distinct Responses of Rare and Abundant Microbial Taxa to In Situ Chemical Stabilization of Cadmium-Contaminated Soil

mSystems ◽  
2021 ◽  
Author(s):  
Min Xu ◽  
Qiaoyun Huang ◽  
Zhenqian Xiong ◽  
Hao Liao ◽  
Zhenguang Lv ◽  
...  

Understanding the ecological roles of rare and abundant species in the restoration of soil ecosystem functions is crucial to remediation of heavy metal-polluted soil. Our study assessed the efficiencies of five commonly used soil amendments on recovery of ecosystem multifunctionality and emphasized the relative contributions of rare and abundant microbial communities to ecosystem multifunctionality.

2021 ◽  
Vol 2 (4) ◽  
pp. 53-58
Author(s):  
Hasnain Raza ◽  

As anthropogenic activities rise over the world, representing an environmental threat, soil contamination and treatment of polluted areas have become a worldwide concern. Bioremediation is a sustainable technique that could be a cost-effective mitigating solution for heavy metal-polluted soil regeneration. Due to the difficulties in determining the optimum bioremediation methodology for each type of pollutant and the lack of literature on soil bioremediation, we reviewed the main in-situ type, their current properties, applications, and techniques, plants, and microbe’s efficiency for treatment of contaminated soil. In this review, we describe the deeper knowledge of the in-situ types of bioremediation and their different pollutant accumulation mechanisms.


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Fatemeh Mohebzadeh ◽  
Babak Motesharezadeh ◽  
Mohammad Jafari ◽  
Salman Zare ◽  
Maryam Saffari Aman

2016 ◽  
Vol 2 (5) ◽  
pp. 563-566.e5 ◽  
Author(s):  
Chandra Sekhar Pedamallu ◽  
Ami S. Bhatt ◽  
Susan Bullman ◽  
Sharyle Fowler ◽  
Samuel S. Freeman ◽  
...  

2021 ◽  
Author(s):  
Francesca Petriglieri ◽  
Caitlin Singleton ◽  
Miriam Peces ◽  
Jette F. Petersen ◽  
Marta Nierychlo ◽  
...  

AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic–aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


1995 ◽  
Vol 18 (3) ◽  
pp. 191-203 ◽  
Author(s):  
Eva M. Top ◽  
Helene Rore ◽  
Jean-Marc Collard ◽  
Veerle Gellens ◽  
Galina Slobodkina ◽  
...  

2015 ◽  
Vol 1130 ◽  
pp. 19-22
Author(s):  
M.P. Belykh ◽  
S.V. Petrov ◽  
V.F. Petrov ◽  
A.Yu. Chikin ◽  
N.L. Belkova

The methods of biodegradation are of special interest because they help solving environmental problems of wastes detoxification from gold-mining operations. The use of bacterial strains is a promising approach in the field of biotechnology to destruct cyanide-bearing compounds. The diversity of microbial communities both in heap in situ and in the enriched cultures was studied with molecular genetic methods. The differences in representation of bacteria, cultivated in unexploitable and operating heaps, are territory, site and heap specific. The strains of Pseudomonas sp. and Methylobacterium sp. possess the biotechnological potential and might be used in biodegradation of heap leaching wastes in extreme continental climate.


Sign in / Sign up

Export Citation Format

Share Document