scholarly journals Clinical and Microbiological Characteristics of Recurrent Escherichia coli Bacteremia

Author(s):  
Tatsuya Kobayashi ◽  
Mahoko Ikeda ◽  
Yuta Okada ◽  
Yoshimi Higurashi ◽  
Shu Okugawa ◽  
...  

Escherichia coli causes bloodstream infection, although not all strains are pathogenic to humans. In some cases, this infection reoccurs, and several reports have described the clinical characteristics and/or molecular microbiology of recurrent Escherichia coli bacteremia.

2016 ◽  
Vol 60 (6) ◽  
pp. 3270-3275 ◽  
Author(s):  
M. Earth Hasassri ◽  
Thomas G. Boyce ◽  
Andrew Norgan ◽  
Scott A. Cunningham ◽  
Patricio R. Jeraldo ◽  
...  

We describe a 16-year-old neutropenic patient from the Middle East with bloodstream infection caused by two carbapenemase-producingEscherichia coliisolates that we characterized by whole-genome sequencing. While one displayed meropenem resistance and wasblaNDMpositive, the other demonstrated meropenem susceptibility yet harboredblaOXA181(which encodes ablaOXA48-like enzyme). This report highlights the challenge of laboratory detection ofblaOXA48-like enzymes and the clinical implications of genotypic resistance detection in carbapenemase-producingEnterobacteriaceae.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Anna Allué-Guardia ◽  
Emmanuel C. Nyong ◽  
Sara S. K. Koenig ◽  
Sean M. Vargas ◽  
James L. Bono ◽  
...  

Escherichia coli strain C600 is a prototypical K-12 derived laboratory strain which has been broadly used for molecular microbiology and bacterial physiology studies since its isolation in 1954. Here, we present the closed genome sequence of E. coli strain C600, retrieved from the American Type Culture Collection (ATCC 23724).


2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Olabisi Ojo ◽  
Derrick Scott ◽  
Bamidele Iwalokun ◽  
Babatunde Odetoyin ◽  
Anne Grove

ABSTRACT Escherichia coli laboratory strains remain instrumental for the development of tools and techniques in molecular microbiology. The transcriptional regulator SlyA, associated with host-derived oxidative stress, antibiotic resistance, and virulence, is prominent in Enterobacteriaceae. Here, we announce a transcriptome data set detailing the global gene expression in E. coli BW25113 and its slyA mutant.


2011 ◽  
Vol 55 (9) ◽  
pp. 4443-4446 ◽  
Author(s):  
Hélène Guillon ◽  
Didier Tande ◽  
Hedi Mammeri

ABSTRACTEscherichia coliisolate MEV, responsible for a bloodstream infection, was resistant to penicillins, cephalosporins, and ertapenem. Molecular and biochemical characterization revealed the production of a novel, chromosome-borne, extended-spectrum AmpC (ESAC) β-lactamase with a Ser-282 duplication and increased carbapenemase activity. This study demonstrates for the first time that chromosome-borne ESAC β-lactamases can contribute to the emergence of ertapenem resistance inE. coliclinical isolates.


2021 ◽  
Author(s):  
Timothy J. Dallman ◽  
David R. Greig ◽  
Saheer E. Gharbia ◽  
Claire Jenkins

The increasing use of PCR for the detection of gastrointestinal pathogens in hospital laboratories in England has improved the detection of Shiga toxin-producing Escherichia coli (STEC), and the diagnosis of haemolytic uraemic syndrome (HUS). We aimed to analyse the microbiological characteristics and phylogenetic relationships of STEC O26:H11, clonal complex (CC) 29, in England to inform surveillance, and to assess the threat to public health. There were 502 STEC belonging to CC29 isolated between 2014 and 2019, of which 416 were from individual cases. The majority of isolates belonged to one of three major sequence types (STs), ST16 (n=37), ST21 (n=350) and ST29 (n=24). ST16 and ST29 were mainly isolated from cases reporting recent travel abroad. Within ST21, there were three main clades associated with domestic acquisition. All three domestic clades had Shiga toxin subtype gene (stx) profiles associated with causing severe clinical outcomes including STEC-HUS, specifically either stx1a, stx2a or stx1a/stx2a. Isolates from the same patient, same household or same outbreak with an established source for the most part fell within 5-SNP single linkage clusters. There were 19 5-SNP community clusters, of which six were travel-associated and one was an outbreak of 16 cases caused by the consumption of contaminated salad leaves. Of the remaining 12 clusters, 9/12 were either temporally or geographically related or both. Exposure to foodborne STEC O26:H11 ST21 capable of causing severe clinical outcomes, including STEC-HUS, is an emerging risk to public health in England. The lack of comprehensive surveillance of this STEC serotype is a concern, and there is a need to expand the implementation of methods capable of detecting STEC in local hospital settings.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nina Salinger Prasanphanich ◽  
Emily J. Gregory ◽  
John J. Erickson ◽  
Hilary Miller-Handley ◽  
Jeremy M. Kinder ◽  
...  

ABSTRACT Maternal sepsis is a leading cause of morbidity and mortality during pregnancy. Escherichia coli is a primary cause of bacteremia in women and occurs more frequently during pregnancy. Several key outstanding questions remain regarding how to identify women at highest infection risk and how to boost immunity against E. coli infection during pregnancy. Here, we show that pregnancy-induced susceptibility to E. coli systemic infection extends to rodents as a model of human infection. Mice infected during pregnancy contain >100-fold-more recoverable bacteria in target tissues than nonpregnant controls. Infection leads to near complete fetal wastage that parallels placental plus congenital fetal invasion. Susceptibility in maternal tissues positively correlates with the number of concepti, suggesting important contributions by expanded placental-fetal target tissue. Remarkably, these pregnancy-induced susceptibility phenotypes are also efficiently overturned in mice with resolved sublethal infection prior to pregnancy. Preconceptual infection primes the accumulation of E. coli-specific IgG and IgM antibodies, and adoptive transfer of serum containing these antibodies to naive recipient mice protects against fetal wastage. Together, these results suggest that the lack of E. coli immunity may help discriminate individuals at risk during pregnancy, and that overriding susceptibility to E. coli prenatal infection by preconceptual priming is a potential strategy for boosting immunity in this physiological window of vulnerability. IMPORTANCE Pregnancy makes women especially vulnerable to infection. The most common cause of bloodstream infection during pregnancy is by a bacterium called Escherichia coli. This bacterium is a very common cause of bloodstream infection, not just during pregnancy but in all individuals, from newborn babies to the elderly, probably because it is always present in our intestine and can intermittently invade through this mucosal barrier. We first show that pregnancy in animals also makes them more susceptible to E. coli bloodstream infection. This is important because many of the dominant factors likely to control differences in human infection susceptibility can be property controlled for only in animals. Despite this vulnerability induced by pregnancy, we also show that animals with resolved E. coli infection are protected against reinfection during pregnancy, including having resistance to most infection-induced pregnancy complications. Protection against reinfection is mediated by antibodies that can be measured in the blood. This information may help to explain why most women do not develop E. coli infection during pregnancy, enabling new approaches for identifying those at especially high risk of infection and strategies for preventing infection during pregnancy.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Danelle R. Weakland ◽  
Sara N. Smith ◽  
Bailey Bell ◽  
Ashootosh Tripathi ◽  
Harry L. T. Mobley

ABSTRACT Serratia marcescens is a bacterium frequently found in the environment, but over the last several decades it has evolved into a concerning clinical pathogen, causing fatal bacteremia. To establish such infections, pathogens require specific nutrients; one very limited but essential nutrient is iron. We sought to characterize the iron acquisition systems in S. marcescens isolate UMH9, which was recovered from a clinical bloodstream infection. Using RNA sequencing (RNA-seq), we identified two predicted siderophore gene clusters (cbs and sch) that were regulated by iron. Mutants were constructed to delete each iron acquisition locus individually and in conjunction, generating both single and double mutants for the putative siderophore systems. Mutants lacking the sch gene cluster lost their iron-chelating ability as quantified by the chrome azurol S (CAS) assay, whereas the cbs mutant retained wild-type activity. Mass spectrometry-based analysis identified the chelating siderophore to be serratiochelin, a siderophore previously identified in Serratia plymuthica. Serratiochelin-producing mutants also displayed a decreased growth rate under iron-limited conditions created by dipyridyl added to LB medium. Additionally, mutants lacking serratiochelin were significantly outcompeted during cochallenge with wild-type UMH9 in the kidneys and spleen after inoculation via the tail vein in a bacteremia mouse model. This result was further confirmed by an independent challenge, suggesting that serratiochelin is required for full S. marcescens pathogenesis in the bloodstream. Nine other clinical isolates have at least 90% protein identity to the UMH9 serratiochelin system; therefore, our results are broadly applicable to emerging clinical isolates of S. marcescens causing bacteremia.


2012 ◽  
Vol 78 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Dongfei Han ◽  
Ji-Young Ryu ◽  
Robert A. Kanaly ◽  
Hor-Gil Hur

ABSTRACTA plasmid, pTA163, inEscherichia colicontained an approximately 34-kb gene fragment fromPseudomonas putidaJYR-1 that included the genes responsible for the metabolism oftrans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyzetrans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter inE. colicatalyzed oxidative cleavage of a propenyl group oftrans-anethole to an aldehyde group, resulting in the production ofpara-anisaldehyde, and this gene was designatedtao(trans-anetholeoxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein ofAgrobacterium vitisS4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water intop-anisaldehyde using18O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase fromPseudomonas putidaIE27 andPseudomonas nitroreducensJin1, TAO fromP. putidaJYR-1 catalyzed isoeugenol,O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts ofE. coli(pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


Author(s):  
Qing Zhang ◽  
Hao-Yang Gao ◽  
Ding Li ◽  
Chang-Sen Bai ◽  
Zheng Li ◽  
...  

Abstract Background Few mortality-scoring models are available for solid tumor patients who are predisposed to develop Escherichia coli–caused bloodstream infection (ECBSI). We aimed to develop a mortality-scoring model by using information from blood culture time to positivity (TTP) and other clinical variables. Methods A cohort of solid tumor patients who were admitted to hospital with ECBSI and received empirical antimicrobial therapy was enrolled. Survivors and non-survivors were compared to identify the risk factors of in-hospital mortality. Univariable and multivariable regression analyses were adopted to identify the mortality-associated predictors. Risk scores were assigned by weighting the regression coefficients with corresponding natural logarithm of the odds ratio for each predictor. Results Solid tumor patients with ECBSI were distributed in the development and validation groups, respectively. Six mortality-associated predictors were identified and included in the scoring model: acute respiratory distress (ARDS), TTP ≤ 8 h, inappropriate antibiotic therapy, blood transfusion, fever ≥ 39 °C, and metastasis. Prognostic scores were categorized into three groups that predicted mortality: low risk (< 10% mortality, 0–1 points), medium risk (10–20% mortality, 2 points), and high risk (> 20% mortality, ≥ 3 points). The TTP-incorporated scoring model showed excellent discrimination and calibration for both groups, with AUC being 0.833 vs 0.844, respectively, and no significant difference in the Hosmer–Lemeshow test (6.709, P = 0.48) and the chi-square test (6.993, P = 0.46). Youden index showed the best cutoff value of ≥ 3 with 76.11% sensitivity and 79.29% specificity. TTP-incorporated scoring model had higher AUC than no TTP-incorporated model (0.837 vs 0.817, P < 0.01). Conclusions Our TTP-incorporated scoring model was associated with improving capability in predicting ECBSI-related mortality. It can be a practical tool for clinicians to identify and manage bacteremic solid tumor patients with high risk of mortality.


Sign in / Sign up

Export Citation Format

Share Document