Defining the eastern boundary of the North Asian craton from structural and subsidence history studies of the Verkhoyansk fold-and-thrust belt

Author(s):  
Andrei K. Khudoley ◽  
Andrei V. Prokopiev
2011 ◽  
Vol 182 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Stéphane Molliex ◽  
Olivier Fabbri ◽  
Vincent Bichet ◽  
Herfried Madritsch

Abstract This study presents new constraints for Plio-Quaternary (post-2.4 Ma to present-day) anticline growth along the frontal zone of the Jura fold-and-thrust belt, in the Forêt de Chaux area, located 30 km SW of Besançon. The Forêt de Chaux area consists of a N080°E-elongated depression bordered by the Doubs and Loue rivers to the north and south respectively, and filled with Sundgau-type Pliocene alluvial deposits. The upper surface of the Pliocene deposits between the Loue and Doubs rivers is marked by a N065°E-trending ridge crossing the depression in a median position. A differential uplift along this ridge, post-dating the deposition of the gravels (2.4 Ma), is suggested by several geomorphological observations such as the opposite river migration on each side of the ridge as well as variations of drainage geometry and incision intensity. Geological and geophysical subsurface data indicate that the ridge roughly coincides with the axis of an anticline hidden beneath the Pliocene deposits. The observed uplift is presumably related to a post-2.4 Ma anticline growth. The fact that the azimuth of the hidden anticline axis is parallel to the strike of deep-seated Late Paleozoic basement faults and not to the local strike of the thin-skinned Jura structures indicates that the inferred post-Pliocene deformation could possibly be an expression of a recent thick-skinned deformation of the basement of the northern Alpine foreland. The focal depth (15 km) of the February 24th, 2004, Besançon earthquake supports the hypothesis of a basement fault reactivation.


2021 ◽  
pp. M57-2020-6
Author(s):  
John R. Hopper ◽  
Jon R. Ineson

AbstractThe Franklinian margin composite tectono-sedimentary element (CTSE) in North Greenland is dominated by Neoproterozoic - lowermost Devonian sedimentary strata that include early syn-rift through passive margin TSEs of mixed carbonate and siliciclastic facies. The sedimentary successions are well exposed in much of northern Greenland, but locally were strongly affected by the Ellesmerian Orogeny, resulting in a fold and thrust belt that deformed the northernmost exposures. An exposed palaeo-oilfield attests to the petroleum potential of the basin. Several formations have good source potential and several others have good reservoir properties. Palaeo-heat flow indicators show that temperatures increase to the north, where much of the basin is over-mature. Because of the remoteness of the area and the restricted locations where petroleum potential is likely to remain, the basin is not currently a target for exploration.


2022 ◽  
Vol 115 (1) ◽  
Author(s):  
Federica Lanza ◽  
Tobias Diehl ◽  
Nicholas Deichmann ◽  
Toni Kraft ◽  
Christophe Nussbaum ◽  
...  

AbstractThe interpretation of seismotectonic processes within the uppermost few kilometers of the Earth’s crust has proven challenging due to the often significant uncertainties in hypocenter locations and focal mechanisms of shallow seismicity. Here, we revisit the shallow seismic sequence of Saint-Ursanne of March and April 2000 and apply advanced seismological analyses to reduce these uncertainties. The sequence, consisting of five earthquakes of which the largest one reached a local magnitude (ML) of 3.2, occurred in the vicinity of two critical sites, the Mont Terri rock laboratory and Haute-Sorne, which is currently evaluated as a possible site for the development of a deep geothermal project. Template matching analysis for the period 2000–2021, including data from mini arrays installed in the region since 2014, suggests that the source of the 2000 sequence has not been persistently active ever since. Forward modelling of synthetic waveforms points to a very shallow source, between 0 and 1 km depth, and the focal mechanism analysis indicates a low-angle, NNW-dipping, thrust mechanism. These results combined with geological data suggest that the sequence is likely related to a backthrust fault located within the sedimentary cover and shed new light on the hosting lithology and source kinematics of the Saint-Ursanne sequence. Together with two other more recent shallow thrust faulting earthquakes near Grenchen and Neuchâtel in the north-central portion of the Jura fold-and-thrust belt (FTB), these new findings provide new insights into the present-day seismotectonic processes of the Jura FTB of northern Switzerland and suggest that the Jura FTB is still undergoing seismically active contraction at rates likely < 0.5 mm/yr. The shallow focal depths provide indications that this low-rate contraction in the NE portion of the Jura FTB is at least partly accommodated within the sedimentary cover and possibly decoupled from the basement.


Author(s):  
Yuqing He ◽  
Teng Wang ◽  
Lihua Fang ◽  
Li Zhao

Abstract The Keping-tage fold-and-thrust belt in southwest Tian Shan is seismically active, yet the most well-recorded earthquakes occurred south of the mountain front. The lack of large earthquakes beneath the fold-and-thrust belt thus hinders our understanding of the orogenic process to the north. The 2020 Mw 6.0 Jiashi earthquake is an important event with surface deformation in the fold-and-thrust belt well illuminated by Interferometric Synthetic Aperture Radar, providing an opportunity to study the present-day kinematics of the thrust front through the analysis of satellite measurements of surface deformations. Here, we employ the surface deformation and relocated aftershocks to investigate the fault-slip distribution associated to this event. Further added by an analysis of Coulomb stress changes, we derive a fault model involving slips on a shallow, low-angle (∼10°) north-dipping thrust fault as well as on a left-lateral tear fault and a high-angle south-dipping reverse fault in mid-crust. Aftershocks at depth reflect the basement-involved shortening activated by a thin-skinned thrust faulting event. In addition, this earthquake uplifted the southernmost mountain front with relatively low topography, indicating the basin-ward propagation of the southwest Tian Shan.


2021 ◽  
Vol 19 (2) ◽  
pp. 130-136
Author(s):  
Syed Tallataf Hussain Shah ◽  
Nangyal Ghani Khan ◽  
Muhammad Imran Hafeez Abbasi ◽  
Kamran Tabassum ◽  
Syed Khaizer Wahab Shah

The purpose of this review is to shed light on copper deposits found in different regions of Pakistan. The geological attributes of copper deposits have been considered with their tectonic context. The porphyry copper deposits can be traced in Pakistan from the north through Kohistan Island Arc (KIA) up to the south to Chaghi Magmatic Arc (CMA). These deposits are mainly found in and around the Late Tertiary–Early Tertiary Himalayan Belt, Kohistan magmatic arc, Karakorum Block Foreland fold and thrust belt, Ophiolite Thrust belt, Suture zone and Chaghi Magmatic Arc. These deposits in Pakistan are chiefly established in different episodes of tectonic regimes, including subduction processes, oceanic island arc, continental arc, along with Chaman- OrnachNal Fault system and post-collisional settings.


2013 ◽  
Vol 150 (6) ◽  
pp. 1062-1084 ◽  
Author(s):  
MARTA RAUCH

AbstractThis paper presents the different analogue scenarios of the tectonic evolution of the northern Outer Carpathians (i.e. the Western and northern Eastern Outer Carpathians) which formed as an accretionary wedge in front of the East Alpine–Carpathian–Pannonian (ALCAPA) block during Oligocene–Miocene times. Currently, this fold-and-thrust belt forms an arc which is asymmetrically convex to the north and wider in its eastern part. Palaeomagnetic investigations have suggested that the rocks of the arc underwent counter-clockwise rotation along almost the whole arc, which is difficult to explain as an effect of simple indentation of the triangular indenter. In this case two branches of the arc should be rotated in the opposite directions. The structural evolution of the Western Outer Carpathians is characterized by superposition of two successive tectonic shortening events directed N–S and NE–SW. The results of the presented analogue modelling suggest that two scenarios of the geodynamic evolution of the studied belt could explain the occurrence of such differently oriented shortening events: (1) two phases of differently directed indentation (first to the N, then to the NE) and (2) indenter movement to the NE with simultaneous counter-clockwise rotation. However, the experiment in which the moving indenter is simultaneously rotated produces the most suitable model. The counter-clockwise rotation of the material is only possible in front of both sides of the convex indenter in this model. The results of the analogue modelling also prove that rotation of the ALCAPA block started after formation of the Magura nappe (the innermost nappe of the Western Outer Carpathians).


2020 ◽  
Author(s):  
Charlotte Peigney ◽  
Elisabet Beamud ◽  
Óscar Gratacós ◽  
Luis Valero ◽  
Ruth Soto ◽  
...  

&lt;p&gt;The South-Pyrenean fold-and-thrust belt consists of three major thin-skinned thrust sheets (B&amp;#243;ixols, Montsec and Serres Marginals) made up of uppermost Triassic to Oligocene cover rocks emplaced during Late Cretaceous-Oligocene times. In its central part, it forms a major salient (the Pyrenean South-Central Unit) whose geometry is controlled by the areal distribution of the pre-orogenic Upper Triassic and synorogenic Eocene salt d&amp;#233;collement layers. Both westwards and eastwards, the salient is fringed by Paleogene synorogenic deposits that are deformed by detachment folds with orientations ranging from N-S to E-W. In the western edge of the salient, the varying trend of the folds is a result of synorogenic vertical axis rotations (VAR) which caused the clockwise rotation of the folds from an initial predominant E-W trend to the current NW-SE to NNW-SSE trend. The salient, at least on its western part, developed from a progressive curve originated from divergent thrust transport directions and distributed shortening.&lt;/p&gt;&lt;p&gt;The aim of our study is to get a better understanding of the whole salient, by studying the kinematics of the deformation on the most frontal part of its eastern edge. Here, some sparse anticlockwise rotations have been reported but their origin and their possible relationship with the distribution of the salt d&amp;#233;collements has not yet been addressed. For this purpose, 78 paleomagnetic sites have been sampled on the synorogenic upper Eocene-Oligocene materials of the NE Ebro foreland Basin, in the Artesa de Segre area, focusing on the limbs of oblique salt-cored anticlines (Ponts, Vilanova de l&amp;#8217;Aguda, Cardona) which are detached above the synorogenic Eocene-Oligocene evaporites of the Cardona and the Barbastro formations. VAR analyses principally show anticlockwise rotations similar to those previously identified to the North in the Oliana Anticline, although a small number of clockwise rotations were also detected.&lt;/p&gt;&lt;p&gt;In addition to the VAR analysis, a magnetostratigraphic study of the Eocene-Oligocene continental materials of the northern limb of the Sana&amp;#252;ja Anticline has been conducted in order to constrain the age of these rotations from stratigraphic correlations. The demagnetization of 104 samples from a ca. 1100 m thick magnetostratigraphic section shows Priabonian to Rupelian ages for this succession. The integration of our results on timing, direction and magnitude of foreland VAR with previous paleomagnetic and structural data from both the western and eastern boundaries of the frontal thrust of the Pyrenean South-Central Unit will allow the understanding of the kinematics of the thrust salient as a whole.&lt;/p&gt;


2021 ◽  
Vol 9 ◽  
Author(s):  
Delong Ma ◽  
Jianying Yuan ◽  
Yanpeng Sun ◽  
Hongbin Wang ◽  
Dengfa He ◽  
...  

Because of the influence of the far field effect of the collision between Euro-Asian and India plates during the Late Cenozoic, the Tian Shan orogenic belt underwent intense reactivation, forming the Southern Junggar fold-and-thrust belt (SJ-FTB) to the north and the Kuqa fold-and-thrust belt to the south. Most previous research focuses on the deformation features and mechanisms during the Late Cenozoic. However, little research has been done on deformation features and mechanisms during the Late Jurassic. In this paper, we conducted geometric and kinematic analyses of seismic profiles and outcrop data to reveal the Late Jurassic deformation characteristics in SJ-FTB. Furthermore, we carried out sandbox modeling experiments to reproduce the regional structural evolution since the Early Jurassic. Angular unconformity between the Cretaceous and Jurassic is well preserved in the Qigu anticline belt. This unconformity also exists in the Huoerguosi–Manasi–Tugulu (HMT) anticline belt, which is the second fold belt of the SJ-FTB, indicating that the HMT anticline belt started to become active during the Late Jurassic. The Qigu anticline belt reactivated intensively during the Late Cenozoic, and the displacement was transferred to the HMT anticline belt along the Paleogene Anjihaihe Formation mudstone detachment. Therefore, the present-day SJ-FTB forms because of the two-stage compressional deformation from both the Late Jurassic and Late Cenozoic (ca. 24 Ma).


Sign in / Sign up

Export Citation Format

Share Document