Numerical simulation of the dynamics of a liquid conducting surface in a strong electric field

2000 ◽  
Vol 26 (1) ◽  
pp. 33-34 ◽  
Author(s):  
V. G. Suvorov
2019 ◽  
Vol 47 (1) ◽  
pp. 55-57
Author(s):  
N.M. Zubarev ◽  
E.A. Kochurin

In the present work, direct numerical simulation of the interaction of plane capillary waves on the surface of a liquid dielectric in an external tangential electric field with allowance for viscosity forces has been carried out. In the limit of a strong electric field, when viscous and capillary forces can be neglected, at which the curvature of the boundary increases significantly singular points can form at the boundary of the liquid (Zubarev, Kochurin, 2014, Kochurin, 2018, Kochurin, Zubarev, 2018). In the case of a finite electric field, the interaction of opposing nonlinear electrocapillary waves can lead to the appearance of a direct energy cascade. In the quasi-stationary energy dissipation regime, the probability density functions for the angles of the boundary inclination tend to the normal Gaussian distribution, and the shape of the boundary takes on a complex, chaotic form. The spectrum of the surface disturbances in this mode is described by a power dependence of k–5/2. In terms of energy, the resulting spectrum has the form k–3/2, which coincides with the Iroshnikov-Kraichnan energy spectrum and indicates that the observed wave turbulence of the liquid surface and weak magnetohydrodynamic turbulence of interacting Alfven waves have a related nature. The work was carried out within the framework of the theme of state assignment 0389-2015-0023 with the support of the Russian Foundation for Basic Research, projects No. 16-38-60002, 19-08-00098, 17-08-00430), the Presidiums of the Russian Academy of Sciences and the Ural Branch of the Russian Academy of Sciences (projects No. 2 and 18-2-2 -15, respectively) and the Council on grants of the President of the Russian Federation (project SP-132.2016.1).


2019 ◽  
Vol 8 (4) ◽  
pp. 9487-9492

The outdoor insulator is commonly exposed to environmental pollution. The presence of water like raindrops and dew on the contaminant surface can lead to surface degradation due to leakage current. However, the physical process of this phenomenon is not well understood. Hence, in this study we develop a mathematical model of leakage current on the outdoor insulator surface using the Nernst Planck theory which accounts for the charge transport between the electrodes (negative and positive electrode) and charge generation mechanism. Meanwhile the electric field obeys Poisson’s equation. Method of Lines technique is used to solve the model numerically in which it converts the PDE into a system of ODEs by Finite Difference Approximations. The numerical simulation compares reasonably well with the experimental conduction current. The findings from the simulation shows that the conduction current is affected by the electric field distribution and charge concentration. The rise of the conduction current is due to the distribution of positive ion while the dominancy of electron attachment with neutral molecule and recombination with positive ions has caused a significant reduction of electron and increment of negative ions.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.


Sign in / Sign up

Export Citation Format

Share Document