Analytical model of oscillating size dependence of energy and force characteristics of subatomic metal films

2004 ◽  
Vol 46 (3) ◽  
pp. 543-551 ◽  
Author(s):  
V. P. Kurbatsky ◽  
V. V. Pogosov
2004 ◽  
Vol 126 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Masanori Shintani ◽  
Manabu Hamai

In this paper, an analytical model for the nonlinear elastic-plastic vibration for long plates with gaps subjected to random vibrations is considered. The nonlinear vibration is caused by the collision phenomena between a mass through a gap and plates with thickness of 0.5, 0.6, and 0.8 mm. An elastic perfectly plastic solid material is assumed in some cases, which adds another aspect to the nonlinear behavior of the system. The material characteristic of the steel is assumed to be an elasto-plasticity solid model. A restoring force characteristic is obtained as the nonlinear vibration of a cubic equation for 0.5, 0.6, and 0.8 mm, the thickness of the plates by experiments. Now the analytical model is proposed by the elasto-plasticity solid model. The relation between the displacement and the force is described by a complicated equation. The curve from the analytical model is called a deflection curve. The results by the analytical model are compared with the results by the experimental model. The restoring force characteristics by the analysis agree with those of the experiment. The restoring force characteristics of the analysis are described using cubic equations. The simple analysis model for evaluation of the vibration characteristic of the nonlinear vibration system, which performs collision vibration with gaps, is proposed by elasto-plasticity solid model in this paper. The results of this proposed analytical model agree with the experimental results better than the results of the minimum of error of square.


2018 ◽  
Vol 343 ◽  
pp. 69-74 ◽  
Author(s):  
P.V. Borisyuk ◽  
O.S. Vasilyev ◽  
T.I. Kozlova ◽  
Yu.Yu. Lebedinskii ◽  
V.V. Fetisov ◽  
...  

Author(s):  
Takahiro Somaki ◽  
Tsuyoshi Fukasawa ◽  
Takayuki Miyagawa ◽  
Tomohiko Yamamoto ◽  
Yoshifumi Hibako ◽  
...  

Being compatible with the seismic and thermal loads for the large Sodium-cooled Fast Reactor (SFR), the three-dimensional isolation system is inevitable technology. The three-dimensional isolation system consists of the thick rubber bearings, the disc springs and the oil dampers. Since the isolation performances on the rubber bearings in the horizontal direction have been revealed by the previous studies [1], the vertical isolation performance and characteristics such as restoring force and damping performance should be clarified by loading tests to build the analytical model. This paper presents these fundamental vertical isolation characteristics obtained by loading tests with full-scaled disc springs and oil dampers. The disc springs as the vertical restoring forces have 700 mm in external diameter and 34 mm in thickness. The oil dampers have the maximum damping force of 2,000 kN at the velocity of 0.25 m/s. The disc spring is one of the largest size, and the oil damper is one of the largest damping capacity in Japan. The static loading tests such as incremental cyclic loadings under the supporting load were conducted to investigate the restoring force characteristics for the disc springs. The dynamic loading using sinusoidal waves with varied input frequencies or the seismic response waves obtained by seismic response analysis were conducted to investigate the damping performance for the oil dampers. The applicability of the design method and the analytical model for disc springs and oil dampers were demonstrated by the restoring force characteristics obtained from tests. It should be noted, this paper is in series from Part 1.


Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


Author(s):  
L. M. Gignac ◽  
K. P. Rodbell

As advanced semiconductor device features shrink, grain boundaries and interfaces become increasingly more important to the properties of thin metal films. With film thicknesses decreasing to the range of 10 nm and the corresponding features also decreasing to sub-micrometer sizes, interface and grain boundary properties become dominant. In this regime the details of the surfaces and grain boundaries dictate the interactions between film layers and the subsequent electrical properties. Therefore it is necessary to accurately characterize these materials on the proper length scale in order to first understand and then to improve the device effectiveness. In this talk we will examine the importance of microstructural characterization of thin metal films used in semiconductor devices and show how microstructure can influence the electrical performance. Specifically, we will review Co and Ti silicides for silicon contact and gate conductor applications, Ti/TiN liner films used for adhesion and diffusion barriers in chemical vapor deposited (CVD) tungsten vertical wiring (vias) and Ti/AlCu/Ti-TiN films used as planar interconnect metal lines.


Sign in / Sign up

Export Citation Format

Share Document