Purification of the chimeric protein alburon16 from a culture medium of the yeast Pichia pastoris

2012 ◽  
Vol 48 (4) ◽  
pp. 416-420 ◽  
Author(s):  
A. V. Karabel’skii ◽  
M. V. Padkina
Author(s):  
M. Saginova ◽  
Zh. Akishev ◽  
A. Sarsen ◽  
A. Kiribayeva ◽  
B. Khassenov

For survival in cold conditions, many organisms have developed unique adaptive mechanisms based on the synthesis of antifreeze proteins, peptides and glycoproteins that prevent ice formation at negative temperatures. These molecules tend to bind ice crystals and lower the freezing point of the solution without the formation of large crystals. Antifreeze proteins (AFP) were found in almost all types of living organisms, including insects, fungus, yeasts, bacteria and plants. The gene of antifreeze protein - glucan endo-1,3-beta-D-glucosidase (ScGlu-3) from Secale cereale was cloned into shuttle vector pPICZαA. The competent cells of yeast Pichia pastoris GS115 were transformed and the producer strain was obtained, which secreted of ScGlu-3 into the culture medium using 3% methanol as the only carbon source. It was found by western blotting that the maximum accumulation of ScGlu-3 in the culture occurs after 48 hours of fermentation on a medium with methanol. Established that rScGlu-3 precipitates at 50-65% of ammonium sulfate.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17080-17091
Author(s):  
Xinggang Chen ◽  
Zhuang Tian ◽  
Haina Cheng ◽  
Gang Xu ◽  
Hongbo Zhou

The Cu2+ first bound to the outer mannan and finally entered the cytoplasm. During the whole adsorption process, the number of adsorption sites in the outer and middle cell walls was the largest, and then gradually decreased.


Author(s):  
Lisa Klug ◽  
Pablo Tarazona ◽  
Clemens Gruber ◽  
Karlheinz Grillitsch ◽  
Brigitte Gasser ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1379-1391
Author(s):  
Monique A Johnson ◽  
Hans R Waterham ◽  
Galyna P Ksheminska ◽  
Liubov R Fayura ◽  
Joan Lin Cereghino ◽  
...  

Abstract We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.


1995 ◽  
Vol 73 (S1) ◽  
pp. 891-897 ◽  
Author(s):  
James M. Cregg ◽  
David R. Higgins

The methanol-utilizing yeast Pichia pastoris has been developed as a host system for the production of heterologous proteins of commercial interest. An industrial yeast selected for efficient growth on methanol for biomass generation, P. pastoris is readily grown on defined medium in continuous culture at high volume and density. A unique feature of the expression system is the promoter employed to drive heterologous gene expression, which is derived from the methanol-regulated alcohol oxidase I gene (AOX1) of P. pastoris, one of the most efficient and tightly regulated promoters known. The strength of the AOX1 promoter results in high expression levels in strains harboring only a single integrated copy of a foreign-gene expression cassette. Levels may often be further enhanced through the integration of multiple cassette copies into the P. pastoris genome and strategies to construct and select multicopy cassette strains have been devised. The system is particularly attractive for the secretion of foreign-gene products. Because P. pastoris endogenous protein secretion levels are low, foreign secreted proteins often appear to be virtually the only proteins in the culture broth, a major advantage in processing and purification. Key words: heterologous gene expression, methylotrophic yeast, Pichia pastoris, secretion, glycosylation.


2006 ◽  
Vol 43 (5) ◽  
pp. 426-435 ◽  
Author(s):  
Fatemeh Rahbarizadeh ◽  
Mohammad J. Rasaee ◽  
Mehdi Forouzandeh ◽  
Abdol-Amir Allameh

1998 ◽  
Vol 255 (1) ◽  
pp. 213-219 ◽  
Author(s):  
Slawomir Sowka ◽  
Stefan Wagner ◽  
Monika Krebitz ◽  
Siti Arija-Mad-Arif ◽  
Faridah Yusof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document