Lipid synthesis in macrophages during inflammation in vivo: Effect of agonists of peroxisome proliferator activated receptors α and γ and of retinoid X receptors

2008 ◽  
Vol 73 (3) ◽  
pp. 296-304 ◽  
Author(s):  
E. N. Posokhova ◽  
O. M. Khoshchenko ◽  
M. I. Chasovskikh ◽  
E. N. Pivovarova ◽  
M. I. Dushkin
PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Jaou-Chen Huang

In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPARγligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products), capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs), in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.


2006 ◽  
Vol 282 (7) ◽  
pp. 4417-4426 ◽  
Author(s):  
Cicerone Tudor ◽  
Jérôme N. Feige ◽  
Harikishore Pingali ◽  
Vidya Bhushan Lohray ◽  
Walter Wahli ◽  
...  

The nucleus is an extremely dynamic compartment, and protein mobility represents a key factor in transcriptional regulation. We showed in a previous study that the diffusion of peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors regulating major cellular and metabolic functions, is modulated by ligand binding. In this study, we combine fluorescence correlation spectroscopy, dual color fluorescence cross-correlation microscopy, and fluorescence resonance energy transfer to dissect the molecular mechanisms controlling PPAR mobility and transcriptional activity in living cells. First, we bring new evidence that in vivo a high percentage of PPARs and retinoid X receptors is associated even in the absence of ligand. Second, we demonstrate that coregulator recruitment (and not DNA binding) plays a crucial role in receptor mobility, suggesting that transcriptional complexes are formed prior to promoter binding. In addition, association with coactivators in the absence of a ligand in living cells, both through the N-terminal AB domain and the AF-2 function of the ligand binding domain, provides a molecular basis to explain PPAR constitutive activity.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Angela Tesse ◽  
Ramaroson Andriantsitohaina ◽  
Thierry Ragot

Activation of peroxisome proliferator-activated receptors (PPARs), and particularly of PPARαand PPARγ, using selective agonists, is currently used in the treatment of metabolic diseases such as hypertriglyceridemia and type 2 diabetes mellitus. PPARαand PPARγanti-inflammatory, antiproliferative and antiangiogenic properties in cardiovascular cells were extensively clarified in a variety of in vitro and in vivo models. In contrast, the role of PPARδin cardiovascular system is poorly understood. Prostacyclin, the predominant prostanoid released by vascular cells, is a putative endogenous agonist for PPARδ, but only recently PPARδselective synthetic agonists were found, improving studies about the physiological and pathophysiological roles of PPARδactivation. Recent reports suggest that the PPARδactivation may play a pivotal role to regulate inflammation, apoptosis, and cell proliferation, suggesting that this transcriptional factor could become an interesting pharmacological target to regulate cardiovascular cell apoptosis, proliferation, inflammation, and metabolism.


2003 ◽  
Vol 369 (3) ◽  
pp. 721-729 ◽  
Author(s):  
María J. BARRERO ◽  
Nuria CAMARERO ◽  
Pedro F. MARRERO ◽  
Diego HARO

The expression of several genes involved in fatty acid metabolism is regulated by peroxisome proliferator-activated receptors (PPARs). To gain more insight into the control of carnitine palmitoyltransferase (CPT) gene expression, we examined the transcriptional regulation of the human CPT II gene. We show that the 5′-flanking region of this gene is transcriptionally active and binds PPARα in vivo in a chromatin immunoprecipitation assay. In addition, we characterized the peroxisome proliferator-responsive element (PPRE) in the proximal promoter of the CPT II gene, which appears to be a novel PPRE. The sequence of this PPRE contains one half-site which is a perfect consensus sequence (TGACCT) but no clearly recognizable second half-site (CAGCAC); this part of the sequence contains only one match to the consensus, which seems to be irrelevant for the binding of PPARα. As expected, other members of the nuclear receptor superfamily also bind to this element and repress the activation mediated by PPARα, thus showing that the interplay between several nuclear receptors may regulate the entry of fatty acids into the mitochondria, a crucial step in their metabolism.


2002 ◽  
Vol 18 (2) ◽  
pp. 41-46 ◽  
Author(s):  
John A. Wagner

There are numerous factors that recommend the use of biomarkers in drug development including the ability to provide a rational basis for selection of lead compounds, as an aid in determining or refining mechanism of action or pathophysiology, and the ability to work towards qualification and use of a biomarker as a surrogate endpoint. Examples of biomarkers come from many different means of clinical and laboratory measurement. Total cholesterol is an example of a clinically useful biomarker that was successfully qualified for use as a surrogate endpoint. Biomarkers require validation in most circumstances. Validation of biomarker assays is a necessary component to delivery of high-quality research data necessary for effective use of biomarkers. Qualification is necessary for use of a biomarker as a surrogate endpoint. Putative biomarkers are typically identified because of a relationship to known or hypothetical steps in a pathophysiologic cascade. Biomarker discovery can also be effected by expression profiling experiment using a variety of array technologies and related methods. For example, expression profiling experiments enabled the discovery of adipocyte related complement protein of 30 kD (Acrp30 or adiponectin) as a biomarker forin vivoactivation of peroxisome proliferator-activated receptors (PPAR)γactivity.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jia-Wei Lin ◽  
Yih-Giun Cherng ◽  
Li-Jen Chen ◽  
Ho-Shan Niu ◽  
Chen Kuei Chang ◽  
...  

Ginseng has been shown to be effective on cardiac dysfunction. Recent evidence has highlighted the mediation of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Thus, we are interested to investigate the role of PPARδin ginseng-induced modification of cardiac contractility. The isolated hearts in Langendorff apparatus and hemodynamic analysis in catheterized rats were applied to measure the actions of ginsengex vivoandin vivo. In normal rats, ginseng enhanced cardiac contractility and hemodynamicdP/dtmaxsignificantly. Both actions were diminished by GSK0660 at a dose enough to block PPARδ. However, ginseng failed to modify heart rate at the same dose, although it did produce a mild increase in blood pressure. Data of intracellular calcium level and Western blotting analysis showed that both the PPARδexpression and troponin I phosphorylation were raised by ginseng in neonatal rat cardiomyocyte. Thus, we suggest that ginseng could enhance cardiac contractility through increased PPARδexpression in cardiac cells.


Sign in / Sign up

Export Citation Format

Share Document