On the Attractive Force of an Elliptical Gaussian Ring

2021 ◽  
Vol 55 (5) ◽  
pp. 467-474
Author(s):  
M. A. Vashkov’yak
Keyword(s):  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Yoshihiko Abe ◽  
Yu Hamada ◽  
Koichi Yoshioka

Abstract We study the axion strings with the electroweak gauge flux in the DFSZ axion model and show that these strings, called the electroweak axion strings, can exhibit superconductivity without fermionic zeromodes. We construct three types of electroweak axion string solutions. Among them, the string with W-flux can be lightest in some parameter space, which leads to a stable superconducting cosmic string. We also show that a large electric current can flow along the string due to the Peccei-Quinn scale much higher than the electroweak scale. This large current induces a net attractive force between the axion strings with the same topological charge, which opens a novel possibility that the axion strings form Y-junctions in the early universe.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 709-718
Author(s):  
Fanming Liu ◽  
Fangming Li ◽  
Xin Jing

Abstract Swarm intelligence method is an effective way to improve the particle degradation and sample depletion of the traditional particle filter. This paper proposes a particle filer based on the gravitation field algorithm (GF-PF), and the gravitation field algorithm is introduced into the resampling process to improve particle degradation and sample depletion. The gravitation field algorithm simulates the solar nebular disk model, and introduces the virtual central attractive force and virtual rotation repulsion force between particles. The particles are moves rapidly to the high-likelihood region under action of the virtual central attractive force. The virtual rotation repulsion force makes the particles keep a certain distance from each other. These operations improve estimation performance, avoid overlapping of particles and maintain the diversity of particles. The proposed method is applied into INS/gravity gradient aided navigation, by combining the sea experimental data of an inertial navigation system. Compared with the particle swarm optimization particle filter(PSO-PF) and artificial physics optimized particle filter (APO-PF), the GF-PF has higher position estimate accuracy and faster convergence speed with the same experimental conditions.


2011 ◽  
Vol 141 ◽  
pp. 408-412 ◽  
Author(s):  
Yao Bao Yin ◽  
Ling Li

The mechanism of gas cooled or heated through a pneumatic throttle orifice is analyzed. Supposing the total energy of the gas is constant, if the force between the molecules does positive energy, it makes gas heated; if it does negative energy, it makes gas cooled. The conversion temperature of gas is an evaluation parameter for repulsive or attractive force. It has utilized Joule-Thomson coefficient and real gas equation of state to obtain the characteristics of conversion temperature, and the relationships between the molecules distance and the phenomenon of gas cooled or heated after throttle at normal temperature by the conversion characteristics are achieved. The experimental results agreed well with the theoretical results.


1994 ◽  
Vol 366 ◽  
Author(s):  
Jerome Crassous ◽  
Jean-Luc Loubet ◽  
Elisabeth Charlaix

ABSTRACTWe report experimental measurements of the adhesion force between metallic substrates in undersaturated heptane vapor atmosphere, with a surface force apparatus. The attractive force between the substrates is strongly dependant of the condensation of a liquid bridge connecting the surfaces. The results show the importance of wetting phenomena for the maximum attractive force: we find that this maximum attraction varies as the power two-third of the curvature of the meniscus connecting the surfaces, in good agreement with the theory of Van der Waals wetting.


2012 ◽  
Vol 367 (1608) ◽  
pp. 3494-3502 ◽  
Author(s):  
Husen Jia ◽  
John R. Liggins ◽  
Wah Soon Chow

Photosynthetic membrane sacs (thylakoids) of plants form granal stacks interconnected by non-stacked thylakoids, thereby being able to fine-tune (i) photosynthesis, (ii) photoprotection and (iii) acclimation to the environment. Growth in low light leads to the formation of large grana, which sometimes contain as many as 160 thylakoids. The net surface charge of thylakoid membranes is negative, even in low-light-grown plants; so an attractive force is required to overcome the electrostatic repulsion. The theoretical van der Waals attraction is, however, at least 20-fold too small to play the role. We determined the enthalpy change, in the spontaneous stacking of previously unstacked thylakoids in the dark on addition of Mg 2+ , to be zero or marginally positive (endothermic). The Gibbs free-energy change for the spontaneous process is necessarily negative, a requirement that can be met only by an increase in entropy for an endothermic process. We conclude that the dominant attractive force in thylakoid stacking is entropy-driven. Several mechanisms for increasing entropy upon stacking of thylakoid membranes in the dark, particularly in low-light plants, are discussed. In the light, which drives the chloroplast far away from equilibrium, granal stacking accelerates non-cyclic photophosphorylation, possibly enhancing the rate at which entropy is produced.


2015 ◽  
Vol 45 (4) ◽  
pp. 477-493
Author(s):  
Z. Starck ◽  
L. Ubysz

The problem of source-sink relationships in di- and tetraploidal radish plants grown in. hydroponic cultures was investigated in two stages of their development: with intensively growing swollen hypocotyl and in the period of actively accumulating nutrients in the storage organ. It was found, that the proportion, between the mass of organs, their RGR and NAR was very similar in di- and tetraploidal populations, probably owing to a similar rate of photosynthesis and pattern of assimilates distribution. The high variability of swollen hypocotyls size is slightly correlated with the size of the whole aerial part and is not correlated with the rate of photosynthesis in leaves. Partial defoliation of radish plants did not affect the rate of photosynthesis of the remaining leaves. Only in the cotyledones the oldest donors of 14C-assimilates, a slight compensation of photosynthesis was reported. It may suggest, that the rate of photosynthesis in radish plants is not under the control of sink activity. The size of the storage organ have determined in some extent its attractive force and influenced the amount of 14C-assimilates exported from their donors. Translocation of photosynthates from the young, still growing leaves was conditioned mainly by their retention power. Therefore, in young radish plants cotyledons were the main donor of <sup>14</sup>C-assimilates.


Author(s):  
Jian Zhou ◽  
Ronald N. Miles ◽  
Shahrzad Towfighian

Conventional capacitive sensing places significant limitations on the sensor design due to the pull-in instability caused by the electrostatic force. The main purpose of this study is to examine a low-cost novel capacitive sensing principle based on electrostatic balance which promises to avoid these design limitations. The approach uses an asymmetric electric field on a structure with fingers that can generate a repulsive force while the gap is low and create an attractive force while the gap is large. The size and thickness of the fingers are also responsible for creating repulsive or attractive forces on the structure. This approach has recently been applied successfully in the design of capacitive actuators to provide a repulsive driving force. A new design principle for capacitive sensing is described that avoids pull-in instability by designing the fingers such that the structure is at the equilibrium.


Sign in / Sign up

Export Citation Format

Share Document