Effect of Oil-Phase Volume Fraction on Rheological Properties of Pistacia Lenticus Fruit Oil-in-Water Emulsion Intended for Healing Wounds

2021 ◽  
Vol 83 (1) ◽  
pp. 151-159
Author(s):  
Samir Chadli ◽  
Mourad Lounis
2012 ◽  
Vol 455-456 ◽  
pp. 991-997
Author(s):  
Hong Jing Liu ◽  
Ying Zhang ◽  
Hui Yao ◽  
Wei Zhao ◽  
Hong Jing Liu

The purpose of this paper is to investigate the effects of ionic liquids (ILs) oil-in-water emulsion on CO2 absorption. 1-octyl-3-methylimidazolium hexafluorophosphate as ILs was dispersed into water forming oil-in-water emulsion to absorb carbon dioxide. Effects of dispersed phase volume fraction, droplet size, and the regeneration of dispersion were studied. Experimental results indicate that ILs oil-in-water emulsion can enhance the CO2 absorption rate under lower dispersion phase volume fraction, and the CO2 mass transfer rate increases with dispersion phase volume fraction. The smaller droplet size can help droplet go into the boundary layer to load CO2 so as to increase the CO2 mass transfer rate. ILs emulsion can be regenerated, but their enhancement effect becomes weaken with the increase of regeneration times.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Sy-Wei Lo ◽  
Tzu-Chun Yang ◽  
Yong-An Cian ◽  
Kuo-Cheng Huang

A model for oil-in-water emulsion has been developed in this paper. A group of viscosity coefficients transiting smoothly and incessantly from the thick film region to the thin film region is defined. The contributions from disperse and continuous phases to the total lubricant pressure and pressure gradient are functions of the oil concentration and the film thickness. The parameters used in these functions are determined by a series of computational fluid dynamics simulations. The onset of inversion and the viscosity after inversion are also investigated. It is found that the critical volume fraction of oil in the inception of inversion is dependent on the oil viscosity and a factor regarding the combined effects from the emulsifier, pH value, droplet size, and the shear rate. A series of simulations using the proposed model has been carried out and compared with the experimental results, such as the film thickness and the extension of oil pool for various rolling speeds and supply oil concentrations. The numerical outputs are basically in agreement with the experiments.


2020 ◽  
Vol 2 (2) ◽  
pp. 25-31
Author(s):  
John Owusu ◽  
J. H. Oldham ◽  
W. O. Ellis ◽  
G. Owusu-Boateng

Food emulsions are thermodynamically unstable mixtures which can be stabilized with the application of an emulsifier. In Ghana emulsifiers are imported, and this increases the final cost of food emulsions. In this study, gums obtained from three tree plant species in Ghana, i.e. Albizia zygia (Albizia), Khaya senegalensis (Khaya), and Anarcardium occidentale (Cashew), were used to stabilize oil-in-water emulsion, and the stability of the emulsions were measured after centrifugation at 1300 x g for 5 min, and upon pH adjustment (from 2 to 3.5). Quantity of gum (mass), solubility of gum in the continuous phase, viscosity, oil volume fraction, and pH were investigated to determine how they affect emulsion stability.The results indicated with the exception of viscosity, emulsion stability is influenced by all the other factors studied. In addition there was no significant difference (P<0.05) between the emulsion stabilities of food emulsions stabilized by gums of Cashew (0.77-0.86) and Acacia (0.78-0.87). The Pearson’s co-efficient of correlation indicated that the emulsion stability values of the emulsions positively correlated with the solubility of the gums (R2 =0.983 at P<0.05, and0.997 at P<0.01). Although there were no significant differences in the emulsion stability values of emulsions stabilized with Albizia and Khaya gums, both recorded significantly lower (P<0.05) emulsion stability values (0.76-0.85 and 0.75-0.81 respectively) than the Acacia gum (control). The Cashew gum has the potential to be utilized as an emulsifier in the food industry. Keywords: Emulsion, Emulsifier, Acacia gum, Oil-in-water Emulsion, Emulsion stability


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 623
Author(s):  
Sonia Losada-Barreiro ◽  
Matej Sova ◽  
Janez Mravljak ◽  
Luciano Saso ◽  
Carlos Bravo-Díaz

We synthesized and determined the antioxidant activity and distribution of a new cyanothiophene-based compound, N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-3,5-dihydroxybenzamide (SIM-53B), in intact stripped olive oil-in-water emulsion. The in vitro antioxidant properties of SIM-53B were evaluated and compared to those for Trolox and resveratrol. Addition of an emulsifier (Tween 20) creates a narrow region, the aqueous–oil interface, and the distribution of SIM-53B can be described by two partition constants: PWI (between aqueous/interfacial regions) and POI (between oil/interfacial regions). The effects of emulsifier concentration expressed in terms of the volume fraction, ΦI, and O/W ratio were also evaluated on its distribution. SIM-53B is predominantly distributed (>90%) in the interfacial region of 1:9 (O/W) olive oil-in-water emulsions at the lowest emulsifier volume fraction (ΦI = 0.005) and only a small fraction is located in the aqueous (<5%) and the oil (<5%) regions. Besides, the concentration of SIM-53B in the interfacial region of the emulsions is ~170–190-fold higher than the stoichiometric concentration, emphasizing the compartmentalization effects. Results suggest that the emulsifier volume fraction is a key parameter that may modulate significantly its concentration in the interface. Our study suggests that cyanothiophene-based compounds may be interesting additives for potential lipid protection in biomembranes or other lipid-based systems.


Sign in / Sign up

Export Citation Format

Share Document