Crystal Structure of the Adduct Hexahydroxotelluric Acid-Disodium Ethylenediaminetetraacetate-Water (1/1/2)

1995 ◽  
Vol 60 (5) ◽  
pp. 820-828 ◽  
Author(s):  
Ivana Císařová ◽  
Jana Podlahová ◽  
Jaroslav Podlaha

The title compound crystallizes in the form of racemic twins of hexagonal symmetry from slightly acidic aqueous solutions containing H6TeO6 and Na2H2edta in a broad range of molar ratios. The crystals are of excellent quality and high diffraction power, thus enabling the structure determination with a precission not routinely attainable by conventional single crystal X-ray diffraction (R = 0.015 at room temperature). The building units of the structure, held together by a system of hydrogen bonds, are the octahedral Te(OH)6 molecule, the H2edta2- anion with protonated nitrogens, two water molecules and two sodium cations surrounded by ten oxygens in the O4Na(mi-O)2NaO4 moiety of irregular geometry.

2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


2019 ◽  
Vol 104 (11) ◽  
pp. 1620-1624 ◽  
Author(s):  
Li Zhang ◽  
Joseph R. Smyth ◽  
Takaaki Kawazoe ◽  
Steven D. Jacobsen ◽  
Jingjing Niu ◽  
...  

Abstract Fe-bearing phase E coexisting with ringwoodite and wadsleyite has been synthesized at near-geotherm temperatures in hydrous KLB-1 peridotite compositions held at 18 and 19 GPa, and 1400 °C for 27 h. The long heating duration time of syntheses implies that phase E can be a stable component of the mantle under hydrous conditions. Single-crystal X-ray diffraction analyses show that the M1 octahedral site is 72.1–75.2 at% occupied, whereas the M2 and tetrahedral Si sites are 2.4–2.9 at% and 18.9–19.8 at% occupied, respectively. The M1 site occupancies show a positive correlation with Fe/Mg molar ratios, indicating that Fe mainly occupies the M1 site in the phase E structure. High-pressure Raman spectroscopy shows that the framework Raman frequencies of Fe-bearing phase E increase continuously with increasing pressures up to 19 GPa at room temperature, and there is no indication for a major change in the crystal structure. If transition-zone regions adjacent to subducting slabs are hydrated by fluids generated at the top of the lower mantle, Fe-bearing phase E is expected to occur at wadsleyite-ringwoodite phase transition boundary (about 520 km) as an important phase for incorporating water.


1996 ◽  
Vol 11 (4) ◽  
pp. 318-320 ◽  
Author(s):  
A. Ratuszna ◽  
S. Juszczyk ◽  
G. Malłecki

The crystal structure of Cr2[Ni(CN)4]3·10H2O has been determined on X-ray diffraction powder data by means of the Rietveld method. The starting model was based on the isomorphic, disordered structure of Mn3[Co(CN)6]2·12H2O. At room temperature the crystal is cubic, F4¯3m, a=10.097(6) Å, V=1029.4(5) Å3. The structure is disordered and contains 1.33 formula weights per unit cell. The Ni and Cr ions are coordinated by N and C atoms, respectively, forming octahedra linked by CN groups. The water molecules replace partly the chromium, carbon, and nitrogen positions in the crystal. The final R values are: Rwp=0.032 (Rexp=0.023), RB=0.088, and DW-Stat.=1.31 (DWexp=1.8).


2020 ◽  
Vol 76 (3) ◽  
pp. 244-249
Author(s):  
Christine Rincke ◽  
Horst Schmidt ◽  
Wolfgang Voigt

During investigations of the formation of hydrated magnesium carbonates, a sample of the previously unknown magnesium carbonate hexahydrate (MgCO3·6H2O) was synthesized in an aqueous solution at 273.15 K. The crystal structure consists of edge-linked isolated pairs of Mg(CO3)(H2O)4 octahedra and noncoordinating water molecules, and exhibits similarities to NiCO3·5.5H2O (hellyerite). The recorded X-ray diffraction pattern and the Raman spectra confirmed the formation of a new phase and its transformation to magnesium carbonate trihydrate (MgCO3·3H2O) at room temperature.


Author(s):  
Dana-Céline Krause ◽  
Christian Näther ◽  
Wolfgang Bensch

Reaction of K8{Ta6O19}·16H2O with [Ni(tren)(H2O)Cl]Cl·H2O in different solvents led to the formation of single crystals of the title compound, [Ni4Ta6O19(C6H18N4)4]·19H2O or {[Ni2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O (tren is N,N-bis(2-aminoethyl)-1,2-ethanediamine, C6H18N4). In its crystal structure, one Lindqvist-type anion {Ta6O19}8– (point group symmetry \overline{1}) is connected to two NiII cations, with both of them coordinated by one tren ligand into discrete units. Both NiII cations are sixfold coordinated by O atoms of the anion and N atoms of the organic ligand, resulting in slightly distorted [NiON5] octahedra for one and [NiO3N3] octahedra for the other cation. These clusters are linked by intermolecular O—H...O and N—H...O hydrogen bonding involving water molecules into layers parallel to the bc plane. Some of these water molecules are positionally disordered and were refined using a split model. Powder X-ray diffraction revealed that a pure crystalline phase was obtained but that on storage at room-temperature this compound decomposed because of the loss of crystal water molecules.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rawia Nasri ◽  
Regaya Ksiksi ◽  
Mohsen Graia ◽  
Mohamed Faouzi Zid

A new 2,6-bis aminomethyl piperidine decavanadate hydrate, (C7N3H20)2V10O28.4.21H2O, was synthesized by slow evaporation of a solution at room temperature. The molecular structure was investigated by single-crystal X-ray diffraction. In the crystal structure, the layers of decavanadate groups, organic cations, and water molecules are arranged parallel to the (010) plane. Also, the prepared compound has been analysed by FTIR spectroscopy and scanning electron microscopy (SEM). The crystal structure of the title compound is stabilized by hydrogen bonds and van der Waals interactions. The cohesion of the structure is ensured by O-H…O and N-H…O hydrogen bonds. The three-dimensional Hirshfeld surface (3D-HS) and the relative two-dimensional fingerprint plots (2D-FPs) of (C7N3H20)2V10O28.4.21H2O compound revealed that the structure is dominated by O…H/H…O (70.8%) and H…H (18.5%) contacts.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Gennady V. Shilov ◽  
Elena I. Zhilyaeva ◽  
Sergey M. Aldoshin ◽  
Alexandra M Flakina ◽  
Rustem B. Lyubovskii ◽  
...  

Electrical resistivity measurements of a dual layered organic conductor (ET)4ZnBr4(1,2-C6H4Cl2) above room temperature show abrupt changes in resistivity at 320 K. Single-crystal X-ray diffraction studies in the 100-350 K range...


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


2021 ◽  
Vol 91 (11) ◽  
pp. 2176-2186
Author(s):  
G. S. Tsebrikova ◽  
Yu. I. Rogacheva ◽  
I. S. Ivanova ◽  
A. B. Ilyukhin ◽  
V. P. Soloviev ◽  
...  

Abstract 2-Hydroxy-5-methoxyphenylphosphonic acid (H3L1) and the complex [Cu(H2L1)2(H2O)2] were synthesized and characterized by IR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The polyhedron of the copper atom is an axially elongated square bipyramid with oxygen atoms of phenolic and of monodeprotonated phosphonic groups at the base and oxygen atoms of water molecules at the vertices. The protonation constants of the H3L1 acid and the stability constants of its Cu2+ complexes in water were determined by potentiometric titration. The protonation constants of the acid in water are significantly influenced by the intramolecular hydrogen bond and the methoxy group. The H3L1 acid forms complexes CuL‒ and CuL24‒ with Cu2+ in water.


Sign in / Sign up

Export Citation Format

Share Document