Adsorption of Carbon Monoxide on Pd/SiO2/Si(111) Studied by Core-Level Photoemission

1998 ◽  
Vol 63 (11) ◽  
pp. 1793-1802 ◽  
Author(s):  
Zdeněk Bastl ◽  
Tomáš Šarapatka

X-Ray photoelectron spectroscopy (XPS) has been used to study the adsorption of carbon monoxide on Pd dispersed on oxidized Si(111) surface. A fraction of the deposited Pd diffusing at room temperature to the SiO2/Si interface increases with decreasing SiO2 thickness. For oxide layers thinner than ≈1 nm, almost all deposited Pd diffuses to SiO2/Si interface forming there Si silicide. Consequently, the amount of adsorbed CO is dependent on the thickness of the thermally grown SiO2 layer. Two different chemical states of adsorbed carbon atoms, the population of which depends on the amount of the Pd deposited, are observed in the C (1s) spectra of adsorbed CO. Adsorption activity of Pd clusters does not depend on whether n- or p-type Si is used. Comparison of the experimental Pd/CO concentration ratios with those calculated assuming several different modes of the Pd growth on SiO2/Si points to the pseudo-Stranski-Krastanow mode (flat clusters with incomplete condensation of the first layer) at 300 K. Changes in charge balance across the Pd/SiO2/Si interface caused by CO adsorption are discussed in terms of the surface photovoltage effect and work function variation.

2013 ◽  
Vol 68 (10-11) ◽  
pp. 651-658 ◽  
Author(s):  
Yang-Mei Chen ◽  
Xiao-Yu Kuang ◽  
Xiao-Wei Sheng ◽  
Huai-Qian Wang ◽  
Peng Shao ◽  
...  

Density functional calculations have been performed for the carbon monoxide molecule adsorption on AunPd+m(n+m ≤ 6) clusters. In the process of CO adsorption, small Au clusters and Pd clusters tend to be an Au atom and three Pd atoms adsorption, respectively. For the mixed Au-Pd clusters, an Au atom, a Pd atom, two atoms consisted of an Au atom and a Pd atom, two Pd atoms, and three Pd atoms adsorption structures are displayed. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and natural bond orbital charge population are calculated. Moreover, CO adsorption energy, CO stretching frequency, and CO bond length (upon adsorption) are also analysed in detail. The results predict that the adsorption strength of Au clusters with CO and the C-O vibration strength is enhanced and reduced after doping of Pd in the AunPdmCO+ complexes, respectively


1990 ◽  
Vol 55 (8) ◽  
pp. 1907-1919
Author(s):  
Jiří Pancíř ◽  
Ivana Haslingerová

A semiempirical quantum-chemical topological method is applied to the study of the fcc (112) surfaces of Ni, Pt, Pd, Rh, and Ir and the nondissociative as well as dissociative chemisorption of carbon monoxide on them. On Ni, dissociative chemisorption is preferred to linear capture, whereas on Pd and Pt, linear capture is preferred although dissociative chemisorption is also feasible. On Rh and, in particular, on Ir, dissociative chemisorption is energetically prohibited. The high dissociative ability of the Ni surface can be ascribed to a rather unusual charge alteration and to the degeneracy of the frontier orbitals. Negative charges at the surface level are only found on the Ni and Pt surfaces whereas concentration of positive charges is established on the Rh and Ir surfaces; the Pd surface is nearly uncharged. Metals with negatively charged surfaces seem to be able to dissociate molecules of carbon monoxide. It is demonstrated that CO adsorption can take place on all metal surface sites, most effectively in the valley of the step. In all the cases studied, the attachment to the surface is found to be energetically more favourable for the carbon than for the oxygen.


Author(s):  
A. Quesada ◽  
G. Chen ◽  
A. T. N'Diaye ◽  
P. Wang ◽  
Y. Z. Wu ◽  
...  

Carbon monoxide (CO) adsorption on ultrathin fcc Fe films is known to result in the rotation of magnetization from out-of-plane to in-plane.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing Nan ◽  
Qiang Fu ◽  
Jing Yu ◽  
Miao Shu ◽  
Lu-Lu Zhou ◽  
...  

AbstractAs the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 μmolCO2·gPt−1·s−1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt−O−Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.


1980 ◽  
Vol 97 (2-3) ◽  
pp. A249-A250
Author(s):  
D.E. Ibbotson ◽  
T.S. Wittrig ◽  
W.H. Weinberg

1990 ◽  
Vol 181 ◽  
Author(s):  
A. Katz ◽  
W. C. Dautremont-Smith ◽  
S. N. G. Chu ◽  
S. J. Pearton ◽  
M. Geva ◽  
...  

ABSTRACTPl/Ti and W thin films on n- and p- type InP and related materials have been investigated for potential use as a refractory ohmic contacts for conventional, single-side coplanar contacted and self-aligned barrier hetcrostructurc laser devices. Pt and Ti films were deposited sequentially by electron gun evaporation, while the W layer was rf sputtered, both onto p+ -In0.53Ga0.47As (Zn doped 5×l018cm−3) and n−- InP (S doped, 5×l018cm−3). The deposition parameters of the two metal systems were optimized to produce adherent films with the lowest possible induced stress. Almost all the studied systems performed as ohmic contacts already as-deposited and were heat treated by means of rapid thermal processing in the temperature range of 300–900°C. The final contact processing conditions were tuned to provide the lowest possible contact resistance values accompanied by low mechanical stress and stable microstructure.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lian Wang ◽  
Juncheng Zhou ◽  
Yuhao Chen ◽  
Liu Xiao ◽  
Guojia Huang ◽  
...  

Abstract An intensity modulated fiber-optic carbon monoxide (CO) sensor by integrating in-situ solvothermal-growth Ag/Co-MOF sensing film is fabricated and evaluated. The Michelson interference sensing structure is composed of single-mode fiber (SMF), enlarged taper, thin-core fiber (TCF), and Ag film as the reflector. Ag/Co-MOF was coated on the cladding of the TCF as the sensing material, and the enlarged taper is located between TCF and SMF as the coupler. The structure, morphology, compositions and thermal stability of the Ag/Co-MOF sensing film were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), etc. The sensitivity of the sensor is 0.04515 dB/ppm, and the fitting parameter of the CO concentration is 0.99876. In addition, the sensor has the advantages of good selectivity, good signal and temperature stability, and it has potential application in trace CO detection.


2011 ◽  
Vol 89 (7) ◽  
pp. 845-853 ◽  
Author(s):  
Sadok Letaief ◽  
Wendy Pell ◽  
Christian Detellier

The clay mineral kaolinite was used as support of gold nanoparticles for heterogeneous catalysis of oxidation reactions, particularly of carbon monoxide oxidation. The application of clay minerals in the preparation of new functional materials provides an alternative approach for the use of these abundant raw materials. To improve the physicochemical properties of kaolinite, as well as to ensure a strong immobilization of the adsorbed species, kaolinite was functionalized by grafting 2-amino-2-methyl-1,3-propanediol on the internal and external surfaces of the octahedral sheets by reaction with the aluminol groups. Gold nanoparticles were then deposited on the external surfaces of the fine particles of the functionalized kaolinite. The resulting gold kaolinite nanohybrid material was characterized by various physicochemical techniques. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry confirmed that gold was effectively reduced to the metallic state during adsorption onto the external surfaces of the modified kaolinite. The gold nanoparticles have a narrow size distribution: more than 88% are less than 4 nm in diameter. Gold nanoparticles deposited on kaolinite catalyze the electro-oxidation of carbon monoxide in alkaline solution at room temperature.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Naiming Miao ◽  
Jinjin Jiang ◽  
Wangping Wu

Electroless nickel–phosphorus (Ni–P) films were produced on the surface of p-type monocrystalline silicon in the alkaline citrate solutions. The influences of bath chemistry and plating variables on the chemical composition, deposition rate, morphology, and thermal stability of electroless Ni–P films on silicon wafers were studied. The as-deposited Ni–P films were almost all medium- and high-P deposits. The concentrations of Ni2+ and citric ions influenced the deposition rate of the films but did not affect P content in the deposits. With increasing H2PO2− content, the P content and deposition rate were steadily increased. The pH and plating temperature had a significant effect on the chemical composition and the deposition rate of the films. The thermal stability of the medium-P film was better than that of the high-P deposit. At the same time, the proposed mechanism of Ni–P films on monocrystalline silicon substrates in the alkaline bath solution was discussed and addressed.


Sign in / Sign up

Export Citation Format

Share Document