Convenient and Stereospecific Synthesis of trans-1,3-Disubstituted Imidazolidines and Their Transformation to 2,3-Diamino-3-phenylpropanoic Acids

2000 ◽  
Vol 65 (10) ◽  
pp. 1580-1586 ◽  
Author(s):  
Ivanka K. Kavrakova ◽  
Maria J. Lyapova

Conversion of the easily available trans-2-oxoimidazolidine-4-carboxylic acid 1 to the corresponding imidazolidines 8 gives after one-step oxidation and ring cleavage the diamino acid 2 in high yield. The difference in the trans-vicinal couplings for the hydrogen-bonded and nonbonded compounds suggests different ring geometry as a result of the balancing effect of the N1 substituent on the "allylic strain".

2020 ◽  
Vol 17 (8) ◽  
pp. 628-630
Author(s):  
Vu Binh Duong ◽  
Pham Van Hien ◽  
Tran Thai Ngoc ◽  
Phan Dinh Chau ◽  
Tran Khac Vu

A simple and practical method for the synthesis on a large scale of altretamine (1), a wellknown antitumor drug, has been successfully developed. The synthesis method involves the conversion of cyanuric chloride (2) into altretamine (1) by dimethylamination of 2 with an aqueous solution of 40% dimethylamine and potassium hydroxide in 1, -dioxan 4in one step to give altretamine (1) in high yield.


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 17-25
Author(s):  
Wenhong Lin ◽  
Shea T. Meyer ◽  
Shawn Dormann ◽  
John D. Chisholm

2-(Trimethylsilyl)ethyl 2,2,2-trichloroacetimidate is readily synthesized from 2-trimethylsilylethanol in high yield. This imidate is an effective reagent for the formation of 2-trimethylsilylethyl esters without the need for an exogenous promoter or catalyst, as the carboxylic acid substrate is acidic enough to promote ester formation without an additive. A deuterium labeling study indicated that a β-silyl carbocation intermediate is involved in the transformation.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1502
Author(s):  
Johannes M. Parikka ◽  
Karolina Sokołowska ◽  
Nemanja Markešević ◽  
J. Jussi Toppari

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.


2014 ◽  
Vol 2 (36) ◽  
pp. 7477-7481 ◽  
Author(s):  
Xinwei Dong ◽  
Yanjie Su ◽  
Huijuan Geng ◽  
Zhongli Li ◽  
Chao Yang ◽  
...  

N-doped CDs can be obtained directly with high yield by pyrolyzing ethanolamine in air within just 7 minutes with the assistance of hydrogen peroxide.


2013 ◽  
Vol 69 (11) ◽  
pp. 1411-1413 ◽  
Author(s):  
Yuko Kawanami ◽  
Hidekazu Tanaka ◽  
Jun-ichi Mizoguchi ◽  
Nobuko Kanehisa ◽  
Gaku Fukuhara ◽  
...  

The absolute configuration has been established of the enantiopureanti-head-to-head cyclodimer of anthracene-2-carboxylic acid (AC) cocrystallized with L-propinol and dichloromethane [systematic name: (S)-2-(hydroxymethyl)pyrrolidin-1-ium (5R,6S,11R,12S)-8-carboxy-5,6,11,12-tetrahydro-5,12:6,11-bis([1,2]benzeno)dibenzo[a,e][8]annulene-2-carboxylate dichloromethane monosolvate], C5H12NO+·C30H19O4−·CH2Cl2. In the crystal structure, the AC dimer interacts with L-prolinol through a nine-membered hydrogen-bonded ring [R22(9)], while the dichloromethane molecule is incorporated to fill the void space. The absolute configuration determined in this study verifies a recent assignment made by comparing theoreticalversusexperimental circular dichroism spectra.


2012 ◽  
Vol 15 (2) ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Maryam Mikhak

AbstractNanostructured zinc titanate (NZT) was synthesized in high yield via a one-step and template-free sol-gel route. The prepared nanocomposite exhibited good size uniformity and regularity. The enhanced photocatalytic activity of the NZT was evaluated in the degradation and mineralization of Indocorn Brilliant Red (M5B) under metal halide lamp irradiation. The effects of different parameters such as pH of the solution, and initial dye concentration on photodegradation of M5B were analyzed. The degradation of M5B follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The experimental results showed that the initial concentration of azo dye in the dye mixture greatly affected the degradation efficiency. At M5B concentrations of 10 mg/L, the optimum conditions for the highest degradation efficiency (94%) of azo dye were a photocatalyst dosage of 0.01 g/L and an initial solution pH of 9. This study provided new insight into the design and preparation of nanomaterial demonstrated an excellent ability to remove organic pollutants in wastewater.


2020 ◽  
Author(s):  
Brian J Wang ◽  
Matthew Duncton

<div> <p>The azetidine group is frequently encountered within contemporary medicinal chemistry where it is viewed as a privileged structure. However, the introduction of an azetidine can be synthetically challenging. Herein, a straight-forward one step synthesis of azetidine-3-amines, starting from a bench stable, commercial material is presented. The reaction tolerates functional groups commonly encountered in biological-, medicinal- and agro-chemistry, and proceeds in moderate-to-high yield with secondary amines, and moderate-to-low yield with primary amines. The methodology compares favorably to recent alternative procedures and can be utilized in “any-stage” functionalization, including late-stage azetidinylation of approved drugs and other compounds with pharmacological activity.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document