scholarly journals FRI0384 BODY COMPOSITION AS A MEDIATOR IN THE RELATIONSHIP BETWEEN PHYSICAL ACTIVITY AND PHYSICAL FUNCTION IN LOWER-LIMB OSTEOARTHRITIS: RESULTS FROM THE KHOALA COHORT

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 789.1-790 ◽  
Author(s):  
M. Wieczorek ◽  
C. Rotonda ◽  
J. Sellam ◽  
F. Guillemin ◽  
A. C. Rat

Background:Many trials investigated the beneficial effect of physical activity (PA) on physical function (PF) in people with osteoarthritis (OA), but factors involved in this relationship are poorly understood. Considering the link between OA and obesity and obesity-related disorders, body composition (BC) could be one of these factors.Objectives:To examine the relationships between baseline components of PA and 5-year PF scores, considering BC variables measured at 3 years as potential mediators in theses associations (Figure).Methods:We used data from the KHOALA cohort, a French population-based multicenter cohort of 878 patients with symptomatic knee and/or hip OA, aged between 40 and 75 years old. Baseline PA intensity (Metabolic Equivalent of Task, MET), frequency (times/week), duration (hours/week) and type (weight-bearing or not) were assessed by the Modifiable Activity Questionnaire. PF was measured with the WOMAC questionnaire at 5 years (higher scores = greater functional limitations).Skeletal muscle mass (grams) and fat mass (grams) were measured by dual X-ray absorptiometry (DXA) in 358 patients at 3 years. Fat mass index (kg/m2), appendicular fat mass (kg), % of fat mass, lean mass index (kg/m2), appendicular muscle mass (kg), skeletal muscle mass index (kg/m2or %) were calculated based on DXA data. Sarcopenia was defined according to the FNIH Sarcopenia Project recommendations.A causal mediation analysis was used to highlight the mediating role of BC variables. Bivariate analyses (multiple linear and logistic regressions) were performed to select the variables of interest. Separate generalized linear models were used to describe the relationships between PA components, PF and selected BC variables. Unadjusted and adjusted for baseline confounders (age, gender, number of comorbidities, disease duration, mental health and vitality scores) models were ran.Results:A 1-MET increase in baseline PA intensity was significantly associated with an improvement in PF at 5 years (-3 points). Weight-bearing PA was also significantly associated with better PF scores (-5 points).A 1-MET-increase in PA intensity at baseline was associated with a subsequent decrease at 3 years in fat mass index (-0.86 k/m2), an increase in skeletal muscle mass index (≥ 6%), and a decrease in % of fat mass (-2%). Non-weight-bearing PA was significantly associated with a decrease in fat mass index (-2.5 kg/m2).A 1-point increase in PF score was associated with a reduction in skeletal muscle mass index (calculated from body mass index, -0.3%) and an increase in skeletal muscle mass index (calculated from height, +3 kg/m2). The presence of sarcopenia was significantly associated with a degradation of PF (+7 points).Crude analyses indicated that 20.4% of the effect of baseline PA intensity on PF scores at 5 years was mediated by skeletal muscle mass index (calculated from height), 23.2% by fat mass index and 26.6% by % of fat mass. Similarly, 19.3% of the effect of baseline PA type on PF scores at 5 years was mediated by fat mass index and 15.1% by % of fat mass. After adjustment, we found no longer evidence of a mediating role of BC variables in these associations.Conclusion:We found significant associations between a 1-MET increase in PA intensity, weight-bearing PA at baseline and improvement in PF at 5 years, without any mediating role of BC variables. Further studies are needed to better understand the factors involved in these associations, especially psychosocial variables.Disclosure of Interests:Maud Wieczorek: None declared, Christine Rotonda: None declared, Jérémie SELLAM: None declared, Francis Guillemin Grant/research support from: Francis Guillemin received a grant from Expanscience paid to his institution., Anne-Christine Rat: None declared

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251025
Author(s):  
Tadashi Ito ◽  
Hideshi Sugiura ◽  
Yuji Ito ◽  
Koji Noritake ◽  
Nobuhiko Ochi

Regular physical activity is an important component of physical health of children and has been associated with increasing skeletal muscle mass and muscle strength. Children with low levels of physical activity may experience health problems, such as loss of muscle mass, later in life. Thus, it may be valuable to identify declining physical function in children who do not perform the recommended amount of physical activity. Therefore, we aimed to evaluate the relationship between the amount of physical activity performed for ≥60 min per day for ≥5 days per week and the skeletal muscle mass index and physical function in young children. In total, 340 typically developing children aged 6–12 years (175 girls; average age, 9.5±1.9 years) were included in this cross-sectional study. We evaluated the proportion of children performing the recommended minimum of 60 min of daily moderate-to-vigorous physical activity at least 5 days per week. The skeletal muscle mass and Gait Deviation Index scores, gait speed, grip strength, Five Times Sit-to-Stand test results, Timed Up-and-Go test results, one-leg standing time, and gait efficiency were evaluated. Multiple logistic regression analyses were performed to assess the association of moderate-to-vigorous physical activity with the skeletal muscle mass index, percent body fat, and physical function, after controlling for confounding factors (age and sex). A logistic regression analysis revealed that the skeletal muscle mass index was independently associated with moderate-to-vigorous physical activity (odds ratio, 2.34; 95% confidence interval, 1.17–4.71; P = 0.017). Performance of moderate-to-vigorous physical activity for ≥5 days per week for ≥60 min per day was associated with the skeletal muscle mass index score of Japanese children. Our findings highlighted the importance of performing moderate-to-vigorous physical activity for the development of skeletal muscle mass in children.


Author(s):  
Harshvardhan Singh ◽  
Bethany A. Moore ◽  
Roshita Rathore ◽  
Michael G. Bemben ◽  
Debra A. Bemben

The authors examined sex-specific relationships between fat mass index (FMI), android/gynoid (A/G) fat ratio, relative skeletal muscle mass index, and Bone-Specific Physical Activity Questionnaire derived bone-loading scores (BLSs) in middle-aged and older adults (men, n = 27; women, n = 33; age = 55–75 years). The FMI, A/G fat ratio, and relative skeletal muscle mass index were estimated by dual-energy X-ray absorptiometry. The Bone-Specific Physical Activity Questionnaire was used to assess: (a) BLSpast (age 1 until 12 months before the study visit), (b) BLScurrent (last 12 months), and (c) BLStotal (average of [a] and [b]) scores. Separate multiple linear regression analysis of (a) age, FMI, and relative skeletal muscle mass index and (b) age, height, and A/G fat ratio versus BLS revealed that FMI and A/G fat ratio were negatively associated with BLSpast and BLStotal (p < .05) in women only. Adiposity and, specifically, central adiposity is negatively related to bone-loading physical activity in middle-aged and older women.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1206 ◽  
Author(s):  
Kenji Imai ◽  
Koji Takai ◽  
Takao Miwa ◽  
Daisuke Taguchi ◽  
Tatsunori Hanai ◽  
...  

The aim of this study was to investigate whether rapid depletions of fat mass and skeletal muscle mass predict mortality in hepatocellular carcinoma (HCC) patients treated with sorafenib. This retrospective study evaluated 61 HCC patients. The cross-sectional areas of visceral and subcutaneous fat mass and skeletal muscle mass were measured by computed tomography, from which the visceral fat mass index (VFMI), subcutaneous fat mass index (SFMI), and skeletal muscle index (L3SMI) were obtained. The relative changes in these indices per 120 days (ΔVFMI, ΔSFMI, and ΔL3SMI) before and after sorafenib treatment were calculated in each patient. Patients within the 20th percentile cutoffs for these indices were classified into the rapid depletion (RD) group. Kaplan–Meier analysis revealed that with respect to ΔL3SMI (p = 0.0101) and ΔSFMI (p = 0.0027), the RD group had a significantly poorer survival. Multivariate analysis using the Cox proportional-hazards model also demonstrated that ΔL3SMI (≤−5.73 vs. >−5.73; hazard ratio [HR]: 4.010, 95% confidence interval [CI]: 1.799–8.938, p = < 0.001) and ΔSFMI (≤−5.33 vs. >−5.33; HR: 4.109, 95% CI: 1.967–8.584, p = < 0.001) were independent predictors. Rapid depletions of subcutaneous fat mass and skeletal muscle mass after the introduction of sorafenib indicate a poor prognosis.


Author(s):  
Praval Khanal ◽  
Lingxiao He ◽  
Georgina K. Stebbings ◽  
Gladys L. Onambele-Pearson ◽  
Hans Degens ◽  
...  

Abstract Background Identification of simple screening tools for detecting lower skeletal muscle mass may be beneficial for planning effective interventions in the elderly. Aims We aimed to (1) establish a threshold for one-leg standing balance test (OLST) time for low muscle mass, and (2) test the ability of that threshold to assess muscular impairments in a poor balance group. Methods Eyes-open OLST (maximum duration 30 s) was performed with right and left legs in 291 women (age 71 ± 6 years). OLST time was calculated as the sum of the OLST time of right and left legs. Fat-free mass (FFM), skeletal muscle mass (SMM), fat mass, biceps brachii and vastus lateralis sizes; handgrip strength (HGS), elbow flexion maximum torque (MVCEF) and knee extension maximum torque (MVCKE) were measured. Muscle quality was calculated as MVCKE/FFM and physical activity was assessed by questionnaire. Low muscle mass was defined as SMMrelative of 22.1%, a previously established threshold for pre-sarcopenia. Results The OLST threshold time to detect low muscle mass was 55 s (sensitivity: 0.63; specificity: 0.60). The poor balance group (OLST < 55 s) had higher fat mass (3.0%, p < 0.001), larger VL thickness (5.1%, p = 0.016), and lower HGS (− 10.2%, p < 0.001), MVCEF (− 8.2%, p = 0.003), MVCKE (− 9.5%, p = 0.012), MVCKE/FFM (− 11.0%, p = 0.004) and physical activity (− 8.0%, p = 0.024) compared to the normal balance group. While after adjusting age, the differences exist for HGS, fat mass and VL thickness only. Discussion An OLST threshold of 55 s calculated as the summed score from both legs discriminated pre-sarcopenic characteristics among active, community-dwelling older women with limited potential (sensitivity 0.63, specificity 0.60). Conclusion OLST, which can be performed easily in community settings without the need for more complex muscle mass measurement, may help identify women at risk of developing sarcopenia.


2012 ◽  
Vol 109 (7) ◽  
pp. 1294-1303 ◽  
Author(s):  
Martha Savaria Morris ◽  
Paul F. Jacques

Resistance training is recognised as a good strategy for retarding age-related declines in muscle mass and strength. Recent studies have also highlighted the potential value of protein intakes in excess of present recommendations. The roles that leisure-time physical activity and protein quality play in the preservation of skeletal muscle during ageing, and how such influences interact in free-living people are unclear. We sought to clarify these issues using data collected on 2425 participants aged ≥ 50 years in the US National Health and Nutrition Examination Survey (2003–2006). We estimated subjects’ usual intakes of total protein and beef from two 24 h diet recalls and computed the appendicular skeletal muscle mass index from anthropometric measures. Participants self-reported their physical activity levels. Analyses accounted for demographic factors and smoking. The association between muscle-strengthening activity and the appendicular skeletal muscle mass index varied with protein intake. Furthermore, among obese subjects with protein intakes < 70 g/d, those who performed such activities had a lower appendicular skeletal muscle mass index than those who were physically inactive. Protein intakes above the present recommendations were associated with benefits to obese subjects only. The appendicular skeletal muscle mass index of non-obese subjects who performed vigorous aerobic activities was consistently high; in obese subjects, it varied with protein intake. High-protein intake was associated with a modest increase in the appendicular skeletal muscle mass index in non-obese, physically inactive subjects. The present findings reinforce the idea that muscle-strengthening exercise preserves muscle when combined with adequate dietary protein. Vigorous aerobic activity may also help.


2020 ◽  
Vol 7 ◽  
Author(s):  
Paul T. Morgan ◽  
Benoit Smeuninx ◽  
Leigh Breen

Sarcopenia is of important clinical relevance for loss of independence in older adults. The prevalence of obesity in combination with sarcopenia (“sarcopenic-obesity”) is increasing at a rapid rate. However, whilst the development of sarcopenia is understood to be multi-factorial and harmful to health, the role of obesity from a protective and damaging perspective on skeletal muscle in aging, is poorly understood. Specifically, the presence of obesity in older age may be accompanied by a greater volume of skeletal muscle mass in weight-bearing muscles compared with lean older individuals, despite impaired physical function and resistance to anabolic stimuli. Collectively, these findings support a potential paradox in which obesity may protect skeletal muscle mass in older age. One explanation for these paradoxical findings may be that the anabolic response to weight-bearing activity could be greater in obese vs. lean older individuals due to a larger mechanical stimulus, compensating for the heightened muscle anabolic resistance. However, it is likely that there is a complex interplay between muscle, adipose, and external influences in the aging process that are ultimately harmful to health in the long-term. This narrative briefly explores some of the potential mechanisms regulating changes in skeletal muscle mass and function in aging combined with obesity and the interplay with sarcopenia, with a particular focus on muscle morphology and the regulation of muscle proteostasis. In addition, whilst highly complex, we attempt to provide an updated summary for the role of obesity from a protective and damaging perspective on muscle mass and function in older age. We conclude with a brief discussion on treatment of sarcopenia and obesity and a summary of future directions for this research field.


2014 ◽  
Vol 22 (2) ◽  
pp. 197-202 ◽  
Author(s):  
A.W. Visser ◽  
R. de Mutsert ◽  
M. Loef ◽  
S. le Cessie ◽  
M. den Heijer ◽  
...  

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P3397-P3397
Author(s):  
K. Nishikawa ◽  
S. Yagi ◽  
T. Ise ◽  
Y. Ueda ◽  
I. Iwase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document