scholarly journals AB0071 THERAPEUTIC EFFECTS OF BONE MARROW MESENCHYMAL STEM CELLS-DERIVED EXOSOMES ON OSTEOARTHRITIS

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1336.3-1336
Author(s):  
C. Dong ◽  
Y. Liu ◽  
A. Deng ◽  
J. Ji ◽  
W. Zheng ◽  
...  

Background:Mesenchymal stem cells (MSCs) have shown chondroprotective effects in clinical models of osteoarthritis (OA)[1].Objectives:The study aimed to investigate the therapeutic potential of exosomes from human bone marrow MSCs (BM-MSCs) in alleviating OA.Methods:The anterior cruciate ligament transection (ACLT) anddestabilization of the medial meniscus (DMM) surgery were performed on the knee joints of a rat OA model, followed by intra-articular injection of BM-MSCs or their exosomes. The beneficial effects were evaluated by histological staining, OARSI scores and micro-CT. Furthermore, BM-MSCs-derived exosomes were administrated to primary human chondrocytes to observe the functional and molecular alterations. In addition, lncRNA MEG3 were investigated in chondrocytes to explore the biological contents accounting for anti-OA effects of BM-MSCs-derived exosomes.Results:Based on the observation in the rat OA model, both of BM-MSCs and BM-MSCs-derived exosomes alleviated cartilage destruction, reduced joint damage and restored the trabecular bone of OA rats. In addition,in vitroassays showed that BM-MSCs- exosomes could maintain the chondrocyte phenotype by increasing collagen type II synthesis and inhibiting IL-1β- induced senescence and apoptosis. Furthermore, exosomal lncRNA MEG3 also reduced the senescence and apoptosis of chondrocytes induced by IL-1β, indicating that lncRNA MEG3 might partially account for the anti-OA effects of BM-MSC exosomes.Conclusion:The exosomes from BM-MSCs exerted beneficial therapeutic effects on OA by reducing the senescence and apoptosis of chondrocytes, suggesting that MSCs-derived exosomes might provide a candidate therapy for OA treatment.References:[1]Mckinney J M, Doan T N, Wang L, et al. Therapeutic efficacy of intra-articular delivery of encapsulated human mesenchymal stem cells on early stage osteoarthritis[J]. Eur Cell Mater, 2019, 37: 42-59.Disclosure of Interests:None declared

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Guo ◽  
Juan Du ◽  
Dan-feng Yuan ◽  
Ya Zhang ◽  
Shu Zhang ◽  
...  

Abstract Background The transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising therapeutic strategy for wound healing. However, the poor migration capacity and low survival rate of transplanted BMSCs in wounds weaken their potential application. Objective To identify the optimal protocol for BMSCs preconditioned with H2O2 and improve the therapeutic efficacy using H2O2-preconditioned BMSCs in wound healing. Methods Mouse BMSCs were exposed to various concentrations of H2O2, and the key cellular functional properties were assessed to determine the optimal precondition with H2O2. The H2O2-preconditioned BMSCs were transplanted into mice with full-thickness excisional wounds to evaluate their healing capacity and tissue engraftment. Results Treatment BMSCs with 50 μM H2O2 for 12 h could significantly enhance their proliferation, migration, and survival by maximizing the upregulation of cyclin D1, SDF-1, and its receptors CXCR4/7 expressions, and activating the PI3K/Akt/mTOR pathway, but inhibiting the expression of p16 and GSK-3β. Meanwhile, oxidative stress-induced BMSC apoptosis was also significantly attenuated by the same protocol pretreatment with a decreased ratio of Bax/Bcl-2 and cleaved caspase-9/3 expression. Moreover, after the identification of the optimal protocol of H2O2 precondition in vitro, the migration and tissue engraftment of transfused BMSCs with H2O2 preconditioning were dramatically increased into the wound site as compared to the un-preconditioned BMSCs. The increased microvessel density and the speedy closure of the wounds were observed after the transfusion of H2O2-preconditioned BMSCs. Conclusions The findings suggested that 50 μM H2O2 pretreated for 12 h is the optimal precondition for the transplantation of BMSCs, which gives a considerable insight that this protocol may be served as a promising candidate for improving the therapeutic potential of BMSCs for wound healing.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5133-5133
Author(s):  
Jun Ren ◽  
Hanfang Jiang ◽  
Lijun Di ◽  
Guohong Song

Abstract Background and Aim: Bone marrow stem cells can differentiate into mature hepatocytes in vitro and in vivo. Moreover, recent study shown bone marrow mesenchymal stem cells (MSCs) are the most potent component in hepatic differentiation, suggesting that the transplantation of MSCs is a promising treatment for liver disease. However, little information is available about the therapeutic potential of MSCs transplantation in cases of hepatic cell carcinoma (HCC). Here, we transplanted bone marrow-derived MSCs to testify their effects in a murine model of orthotopic HCC. Methods:MSCs were obtained from tow male strains of β-galactosidase (β-gal) transgenic mouse(Rosa 26) and BALB/c mouse. MSCs were injected into tumor in BALB/c femal murine models of orthotopic HCC. Tumor growths were assessed by MRI on 7 days and survival rates were observed. When mouse was dying, the liver was removed from each treated mouse and evaluated by x-gal staining, and immunohistochemisty as well. Results: MSCs transplantation increased the survival of hepatocellular carcinoma-bearing mice(25.5±4.5days verus 21.3±1.7days, p=0.025) and decreased tumor diameter slightly (7.7±2.9mm versus 9.4±2.8mm, p=0.284). MSCs transplanted directly into the tumor and/ or normal hepatic parenchyma in the same liver lobe localized mainly at the border between the tumor cells and normal liver parenchyma, induced a large area of coagulative necrosis in the tumor bed. Some engrafted MSCs were positive for albumin. There are in the carcinoma bearing BALB/c mice with MSCs implanted, whether MSCs from BALB/c mice or from Rosa 26 transgenic mice. Conclusion: Our results suggest that the therapeutical effects of MSCs might be mediated not only by their differentiation into hepatocyte, but also mainly by they possess intrinsic antineoplastic properties.


2021 ◽  
Vol 22 (21) ◽  
pp. 11356
Author(s):  
Jiaqiang Deng ◽  
Ping Ouyang ◽  
Weiyao Li ◽  
Lijun Zhong ◽  
Congwei Gu ◽  
...  

Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 μM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-β-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 μM~10 μM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Lukun Zhou ◽  
Shuang Liu ◽  
Zhao Wang ◽  
Jianfeng Yao ◽  
Wenbin Cao ◽  
...  

Abstract Background Liver injury associated with acute graft-versus-host disease (aGVHD) is a frequent and severe complication of hematopoietic stem cell transplantation and remains a major cause of transplant-related mortality. Bone marrow-derived mesenchymal stem cells (BM-MSCs) has been proposed as a potential therapeutic approach for aGVHD. However, the therapeutic effects are not always achieved. In this study, we genetically engineered C57BL/6 mouse BM-MSCs with AKT1 gene and tested whether AKT1-MSCs was superior to control MSCs (Null-MSCs) for cell therapy of liver aGVHD. Results In vitro apoptosis analyses showed that, under both routine culture condition and high concentration interferon-γ (IFN-γ) (100ng/mL) stimulation condition, AKT1-MSCs had a survival (anti-apoptotic) advantage compared to Null-MSCs. In vivo imaging showed that AKT1-MSCs had better homing capacity and longer persistence in injured liver compared to Null-MSCs. Most importantly, AKT1-MSCs demonstrated an enhanced immunomodulatory function by releasing more immunosuppressive cytokines, such as IL-10. Adoptive transfer of AKT1-MSCs mitigated the histopathological abnormalities of concanavalin A(ConA)-induced liver injury along with significantly lowered serum levels of ALT and AST. The attenuation of liver injury correlated with the decrease of TNF-α and IFN-γ both in liver tissue and in the serum. Conclusions In summary, BM-MSCs genetically modified with AKT1 has a survival advantage and an enhanced immunomodulatory function both in vitro and in vivo and thus demonstrates the therapeutic potential for prevention and amelioration of liver GVHD and other immunity-associated liver injuries.


2018 ◽  
Vol 47 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Guo-Jun Wei ◽  
Ke-wen Zheng ◽  
Gang An ◽  
Zuo-Wei Shi ◽  
Kai-Fu Wang ◽  
...  

Background/Aims: Transplantation of bone-marrow-derived mesenchymal stem cells (MSCs) promotes neural cell regeneration after spinal cord injury (SCI). Recently, we showed that suppression of microRNA-383 (miR-383) in MSCs increased the protein levels of glial cell line derived neurotrophic factor (GDNF), resulting in improved therapeutic effects on SCI. However, the overall effects of miR-383 suppression in MSCs on SCI therapy were not determined yet. Here, we addressed this question. Methods: We used bioinformatics tools to predict all miR-383-targeting genes, confirmed the functional bindings in a dual luciferase reporter assay. The effects of alteration of candidate genes in MSCs on cell proliferation were analyzed by MTT assay and by Western blotting for PCNA. The effects on angiogenesis were assessed by HUVEC assay. The effects on SCI in vivo were analyzed by transplantation of the modified MSCs into nude rats that underwent SCI. Results: Suppression of miR-383 in MSCs not only upregulated GDNF protein, but also increased vascular endothelial growth factor A (VEGF-A) and cyclin-dependent kinase 19 (CDK19), two other miR-383 targets. MiR-383-suppression-induced increases in CDK19 resulted in a slight but significant increase in MSC proliferation, while miR-383-suppression-induced increases in VEGF-A resulted in a slight but significant increase in MSC-mediated angiogenesis. Conclusions: Upregulation of CDK19 and VEGF-A by miR-383 suppression in MSCs further improve the therapeutic potential of MSCs in treating SCI in rats.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 78 ◽  
Author(s):  
Sarah Sasse ◽  
Anna Skorska ◽  
Cornelia Aquilina Lux ◽  
Gustav Steinhoff ◽  
Robert David ◽  
...  

Background: Bone marrow (BM)-derived stem cells with their various functions and characteristics have become a well-recognized source for the cell-based therapies. However, knowledge on their therapeutic potential and the shortage for a cross-link between distinct BM-derived stem cells, primed after the onset of myocardial infarction (MI), seems to be still rudimentary. Therefore, the post-examination of the therapeutic characteristics of such primed hematopoietic CD133+ and mesenchymal CD271+ stem cells was the object of the present study. Methods and Results: The effects of respective CD133+ and CD271+ mononuclear cells alone as well as in the co-culture model have been explored with focus on their angiogenic potential. The phenotypic analysis revealed a small percentage of isolated cells expressing both surface markers. Moreover, target stem cells isolated with our standardized immunomagnetic isolation procedure did not show any negative alterations following BM storage in regard to cell numbers and/or quality. In vitro network formation relied predominantly on CD271+ stem cells when compared with single CD133+ culture. Interestingly, CD133+ cells contributed in the tube formation, only if they were cultivated in combination with CD271+ cells. Additional to the in vitro examination, therapeutic effects of the primed stem cells were investigated 48 h post MI in a murine model. Hence, we have found a lower expression of transforming growth factor βeta 3 (TGFβ3) as well as an increase of the proangiogenic factors after CD133+ cell treatment in contrast to CD271+ cell treatment. On the other hand, the CD271+ cell therapy led to a lower expression of the inflammatory cytokines. Conclusion: The interactions between CD271+ and CD133+ subpopulations the extent to which the combination may enhance cardiac regeneration has still not been investigated so far. We expect that the multiple characteristics and various regenerative effects of CD271+ cells alone as well as in combination with CD133+ will result in an improved therapeutic impact on ischemic heart disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hyeon-Jeong Lee ◽  
Hwan-Deuk Kim ◽  
Chan-Hee Jo ◽  
Eun-Yeong Bok ◽  
Saet-Byul Kim ◽  
...  

IFN-γ licensing to mesenchymal stem cells (MSCs) is applied to enhance the therapeutic potential of MSCs. However, although the features of MSCs are affected by several stimuli, little information is available on changes to the therapeutic potential of IFN-γ-licensed differentiated MSCs during xenogeneic applications. Therefore, the present study is aimed at clarifying the effects of adipogenic/osteogenic differentiation and IFN-γ licensing on the in vitro immunomodulatory and migratory properties of porcine bone marrow-derived MSCs in xenogeneic applications using human peripheral blood mononuclear cells (PBMCs). IFN-γ licensing in differentiated MSCs lowered lineage-specific gene expression but did not affect MSC-specific cell surface molecules. Although indoleamine 2,3 deoxygenase (IDO) activity and expression were increased after IFN-γ licensing in undifferentiated MSCs, they were reduced after differentiation. IFN-γ licensing to differentiated MSCs elevated the reduced IDO expression in differentiated MSCs; however, the increase was not sufficient to reach to the level achieved by undifferentiated MSCs. During a mixed lymphocyte reaction with quantification of TNF-α concentration, proliferation and activation of xenogeneic PBMCs were suppressed by undifferentiated MSCs but inhibited to a lesser extent by differentiated MSCs. IFN-γ licensing increasingly suppressed proliferation of PBMCs in undifferentiated MSCs but it was incapable of elevating the reduced immunosuppressive ability of differentiated MSCs. Migratory ability through a scratch assay and gene expression study was reduced in differentiated MSCs than their undifferentiated counterparts; IFN-γ licensing was unable to enhance the reduced migratory ability in differentiated MSCs. Similar results were found in a Transwell system with differentiated MSCs in the upper chamber toward xenogeneic PBMCs in the lower chamber, despite IFN-γ licensing increased the migratory ability of undifferentiated MSCs. Overall, IFN-γ licensing did not enhance the reduced immunomodulatory and migratory properties of differentiated MSCs in a xenogeneic application. This study provides a better understanding of the ways in which MSC therapy can be applied.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Euler Moraes Penha ◽  
Cássio Santana Meira ◽  
Elisalva Teixeira Guimarães ◽  
Marcus Vinícius Pinheiro Mendonça ◽  
Faye Alice Gravely ◽  
...  

The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were culturedin vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.


2021 ◽  
Vol 22 (2) ◽  
pp. 845
Author(s):  
Sungho Shin ◽  
Jeongmin Lee ◽  
Yumi Kwon ◽  
Kang-Sik Park ◽  
Jae-Hoon Jeong ◽  
...  

Mesenchymal stem cells (MSCs) have the potential to be a viable therapy against various diseases due to their paracrine effects, such as secretion of immunomodulatory, trophic and protective factors. These cells are known to be distributed within various organs and tissues. Although they possess the same characteristics, MSCs from different sources are believed to have different secretion potentials and patterns, which may influence their therapeutic effects in disease environments. We characterized the protein secretome of adipose (AD), bone marrow (BM), placenta (PL), and Wharton’s jelly (WJ)-derived human MSCs by using conditioned media and analyzing the secretome by mass spectrometry and follow-up bioinformatics. Each MSC secretome profile had distinct characteristics depending on the source. However, the functional analyses of the secretome from different sources showed that they share similar characteristics, such as cell migration and negative regulation of programmed cell death, even though differences in the composition of the secretome exist. This study shows that the secretome of fetal-derived MSCs, such as PL and WJ, had a more diverse composition than that of AD and BM-derived MSCs, and it was assumed that their therapeutic potential was greater because of these properties.


Sign in / Sign up

Export Citation Format

Share Document