scholarly journals Health status, heat preparation strategies and medical events among elite cyclists who competed in the heat at the 2016 UCI Road World Cycling Championships in Qatar

2020 ◽  
Vol 54 (16) ◽  
pp. 1003-1007 ◽  
Author(s):  
Sebastien Racinais ◽  
David Nichols ◽  
Gavin Travers ◽  
Sebastien Moussay ◽  
Taoufik Belfekih ◽  
...  

PurposeAssess the health status and heat preparation strategies of athletes competing in a World Cycling Championships held in hot ambient conditions (37°C, 25% relative humidity, wet-bulb-globe-temperature 27°C) and monitor the medical events arising during competition.Methods69 cyclists (~9% of the world championships participants) completed a pre-competition questionnaire. Illnesses and injuries encountered by the Athlete Medical Centre (AMC) were extracted from the race reports.Results22% of respondents reported illness symptoms in the 10 days preceding the Championships. 57% of respondents had previously experienced heat-related symptoms (cramping most commonly) while 17% had previously been diagnosed with exertional heat illness. 61% of the respondents had undergone some form of heat exposure prior to the Championships, with 38% acclimating for 5 to 30 days. In addition, several respondents declared to live in warm countries and all arrived in Qatar ~5 days prior to their event. 96% of the respondents used a pre-cooling strategy for the time trials and 74% did so before the road race (p<0.001), with ice vests being the most common. The AMC assessed 46 injuries and 26 illnesses in total, with three cyclists diagnosed with heat exhaustion.ConclusionsThe prevalence of previous heat illness in elite cyclists calls for team and event organisation doctors to be trained on heat illness management, including early diagnosis and rapid on-site cooling. Some cyclists had been exposed to the heat prior to the Championships, but few had a dedicated plan, calling for additional education on the importance of heat acclimation. Pre-cooling was widely adopted.

2018 ◽  
Vol 53 (7) ◽  
pp. 426-429 ◽  
Author(s):  
Sebastien Racinais ◽  
Sebastien Moussay ◽  
David Nichols ◽  
Gavin Travers ◽  
Taoufik Belfekih ◽  
...  

ObjectiveTo characterise the core temperature response and power output profile of elite male and female cyclists during the 2016 UCI Road World Championships. This may contribute to formulating environmental heat stress policies.MethodsCore temperature was recorded via an ingestible capsule in 10, 15 and 15 cyclists during the team time trial (TTT), individual time trial (ITT) and road race (RR), respectively. Power output and heart rate were extracted from individual cycling computers. Ambient conditions in direct sunlight were hot (37°C±3°C) but dry (25%±16% relative humidity), corresponding to a wet-bulb globe temperature of 27°C±2°C.ResultsCore temperature increased during all races (p<0.001), reaching higher peak values in TTT (39.8°C±0.9°C) and ITT (39.8°C±0.4°C), relative to RR (39.2°C±0.4°C, p<0.001). The highest temperature recorded was 41.5°C (TTT). Power output was significantly higher during TTT (4.7±0.3 W/kg) and ITT (4.9±0.5 W/kg) than RR (2.7±0.4 W/kg, p<0.001). Heart rate increased during the TTs (p<0.001) while power output decreased (p<0.001).Conclusion85% of the cyclists participating in the study (ie, 34 of 40) reached a core temperature of at least 39°C with 25% (ie, 10 of 40) exceeding 40°C. Higher core temperatures were reached during the time trials than the RR.


Author(s):  
Iveta Marková ◽  
Ivana Tureková ◽  
Jana Jaďuďová ◽  
Emília Hroncová

The quality of work environment, temperature changes and humidity must be controlled in every production process and in the locations where employees are present. The aim of this paper is to objectively assess the exposure of employees to microclimatic factors of the workplace environment: the warehouse, changing rooms, office and cold room refrigerator. Data were obtained in real working conditions. The heat stress due to cold and heat exposure in the individual locations was evaluated using the WBGT (wet bulb globe temperature) indicator. The parameters of the hygrothermal microclimate (HTM) were objectified by a QUES Temp 44/46 T spherical thermometer. The measurements were performed both in cold and hot periods of the year. The measurements confirmed standard temperatures for individual types of interiors in the winter period, but in the summer period there was a variability of results, leading to the thermal discomfort of employees. The assessment of the WBGT index revealed that nearly 80% of employees are susceptible to hypothermia as a result of thermal stress conditions. It was proven that the temperatures measured by a spherical thermometer in the hottest room were 8.62% higher than the calculated operating temperature, while the difference in the cold room refrigerator was only 1.28% higher.


2016 ◽  
Vol 51 (8) ◽  
pp. 593-600 ◽  
Author(s):  
Earl R. Cooper ◽  
Michael S. Ferrara ◽  
Douglas J. Casa ◽  
John W. Powell ◽  
Steven P. Broglio ◽  
...  

Context: Knowledge about the specific environmental and practice risks to participants in American intercollegiate football during preseason practices is limited. Identifying risks may mitigate occurrences of exertional heat illness (EHI). Objective: To evaluate the associations among preseason practice day, session number, and wet bulb globe temperature (WBGT) and the incidence of EHI. Design: Descriptive epidemiology study. Setting: Sixty colleges and universities representing 5 geographic regions of the United States. Patients or Other Participants: National Collegiate Athletic Association football players. Main Outcome Measure(s): Data related to preseason practice day, session number, and WBGT. We measured WBGT every 15 minutes during the practice sessions and used the mean WBGT from each session in the analysis. We recorded the incidence of EHIs and calculated the athlete-exposures (AEs). Results: A total of 553 EHI cases and 365 810 AEs were reported for an overall EHI rate of 1.52/1000 AEs (95% confidence interval [CI] = 1.42, 1.68). Approximately 74% (n = 407) of the reported EHI cases were exertional heat cramps (incidence rate = 1.14/1000 AEs; 95% CI = 1.03, 1.25), and about 26% (n = 146) were a combination of exertional heat syncope and heat exhaustion (incidence rate = 0.40/1000 AEs; 95% CI = 0.35, 0.48). The highest rate of EHI occurred during the first 14 days of the preseason period, and the greatest risk was during the first 7 days. The risk of EHI increased substantially when the WBGT was 82.0°F (27.8°C) or greater. Conclusions: We found an increased rate of EHI during the first 14 days of practice, especially during the first 7 days. When the WBGT was greater than 82.0°F (27.8°C), the rate of EHI increased. Sports medicine personnel should take all necessary preventive measures to reduce the EHI risk during the first 14 days of practice and when the environmental conditions are greater than 82.0°F (27.8°C) WBGT.


2008 ◽  
Vol 57 (5) ◽  
pp. 763-771 ◽  
Author(s):  
H. Yamagata ◽  
M. Nasu ◽  
M. Yoshizawa ◽  
A. Miyamoto ◽  
M. Minamiyama

In Japan, reclaimed wastewater has been recycled widely for non-potable urban applications and it is to be used for sprinkling roads to mitigate heat island in urban areas. To assess the heat island mitigation effects of the sprinkling reclaimed wastewater on water retentive pavement, we carried out a survey at Shiodome-District, Tokyo. The temperatures of air and roads, humidity, and WBGT (Wet-bulb globe temperature) were measured and heat flux was estimated to compare the condition of the areas with/without sprinkling. The following results were obtained. 1) Sprinkling reclaimed wastewater decreased the road surface temperature by 8 degrees during the daytime and by 3 degrees at night: temperatures equal to those on planting zones. Nevertheless sprinkling was done only in the daytime, the temperature decrease effect was not only obtained during the daytime: it continued through the night, due to the water retentive pavement. 2) Sprinkling reclaimed wastewater reduced the amount of sensible heat flux and increased that of latent heat flux. These results suggest that sprinkling reclaimed wastewater on water retentive pavement can effectively mitigate the heat island phenomenon.


2018 ◽  
Vol 40 ◽  
pp. 9
Author(s):  
Osvaldo Borges Pinto Junior ◽  
Sérgio Wagner Gripp Silveira ◽  
Carlo Ralph De Musis ◽  
Luiz Annunciação ◽  
Osvaldo Alves Pereira

In this study, maps of the estimated heat index for a preservation area in the city of Cuiabá, Mato Grosso, Brazil, were constructed using temperature and relative humidity gradients. Understanding microclimate variable behavior is useful for explaining the relationship between urban sprawl and increased environmental distress. The implementation and preservation of green areas is one way to mitigate the environmental impacts of human activities. Urban parks are one common type of green area in cities. According to ISO 7243, heat exposure can be assessed using the Wet Bulb Globe Temperature (WBGT). This study used multivariate statistical techniques and ordinary kriging to produce a WBGT map of the park during the dry and rainy seasons. Places with heat or freshness islands were identified. Locations along hiking trails and areas with exercise equipment were analyzed for WBGT tendencies in order to propose precautionary heat exposure measures.


2016 ◽  
Vol 59 (12) ◽  
pp. 1169-1176 ◽  
Author(s):  
Ximena P. Garzon-Villalba ◽  
Alfred Mbah ◽  
Yougui Wu ◽  
Michael Hiles ◽  
Hanna Moore ◽  
...  

2019 ◽  
Vol 63 (5) ◽  
pp. 505-520 ◽  
Author(s):  
Mohammed Al-Bouwarthan ◽  
Margaret M Quinn ◽  
David Kriebel ◽  
David H Wegman

Abstract Objectives Excessive heat exposure poses significant risks to workers in hot climates. This study assessed the intensity and duration of heat stress exposure among workers performing residential construction in southeastern Saudi Arabia (SA) during the summer, June–September 2016. Objectives were to: identify work factors related to heat stress exposure; measure environmental heat exposure at the construction sites; assess the heat stress risk among workers using the wet bulb globe temperature (WBGT) index; and determine if temperature-humidity indices can be appropriate alternatives to WBGT for managing heat stress risk at the construction sites. Methods Worksite walkthrough surveys and environmental monitoring were performed, indoors and outdoors, at 10 construction sites in Al-Ahsa Province. A heat stress exposure assessment was conducted according to the American Conference of Governmental Industrial Hygienists (ACGIH®) guidelines, which uses the WBGT index. WBGT measurements from two instruments were compared. Alternative heat stress indices were compared to the WBGT: the heat index (HI) and humidex (HD) index. Results Construction workers were exposed to excessive heat stress, indoors and outdoors over a large part of the work day. Complying with a midday outdoor work ban (12–3 p.m.) was not effective in reducing heat stress risk. The highest intensity of exposure was outdoors from 9 a.m. to 12 p.m.; a period identified with the highest hourly mean WBGT values (31–33°C) and the least allowable working time according to ACGIH® guidelines. Comparison of the alternative indices showed that the HI is more reliable than the HD as a surrogate for the WBGT index in the climate studied. Conclusion The extreme heat exposure represents a serious risk. The severity of heat stress and its impact are projected to increase due to climate change, emphasizing the need for immediate improvement of the current required protective measures and the development of occupational heat stress exposure guidelines in SA.


Author(s):  
Kazuki Shimizu ◽  
Stuart Gilmour ◽  
Hiromi Mase ◽  
Phuong Mai Le ◽  
Ayaka Teshima ◽  
...  

The 2020 summer Olympic and Paralympic Games in Tokyo were postponed to July–September 2021 due to the coronavirus disease 2019 (COVID-19) pandemic. While COVID-19 has emerged as a monumental health threat for mass gathering events, heat illness must be acknowledged as a potentially large health threat for maintaining health services. We examined the number of COVID-19 admissions and the Tokyo rule for emergency medical care, in Tokyo, from March to September 2020, and investigated the weekly number of emergency transportations due to heat illness and weekly averages of the daily maximum Wet Bulb Globe Temperature (WBGT) in Tokyo in the summer (2016–2020). The peak of emergency transportations due to heat illness overlapped the resurgence of COVID-19 in 2020, and an increase of heat illness patients and WBGT has been observed. Respect for robust science is critical for the decision-making process of mass gathering events during the pandemic, and science-based countermeasures and implementations for COVID-19 will be warranted. Without urgent reconsiderations and sufficient countermeasures, the double burden of COVID-19 and heat-related illnesses in Tokyo will overwhelm the healthcare provision system, and maintaining essential health services will be challenging during the 2021 summer Olympic and Paralympic Games.


2018 ◽  
Vol 27 (5) ◽  
pp. 413-418 ◽  
Author(s):  
Cody R. Smith ◽  
Cory L. Butts ◽  
J.D. Adams ◽  
Matthew A. Tucker ◽  
Nicole E. Moyen ◽  
...  

Context: Exercising in the heat leads to an increase in body temperature that can increase the risk of heat illness or cause detriments in exercise performance. Objective: To examine a phase change heat emergency kit (HEK) on thermoregulatory and perceptual responses and subsequent exercise performance following exercise in the heat. Design: Two randomized crossover trials that consisted of 30 minutes of exercise, 15 minutes of treatment (T1), performance testing (5-10-5 pro-agility test and 1500-m run), and another 15 minutes of treatment (T2) identical to T1. Setting: Outdoors in the heat (wet-bulb globe temperature: 31.5°C [1.8°C] and relative humidity: 59.0% [5.6%]). Participants: Twenty-six (13 men and 13 women) individuals (aged 20–27 y). Interventions: Treatment was performed with HEK and without HEK (control, CON) modality. Main Outcome Measures: Gastrointestinal temperature, mean skin temperature, thirst sensation, and muscle pain. Results: Maximum gastrointestinal temperature following exercise and performance was not different between trials (P > .05). Cooling rate was faster during T1 CON (0.053°C/min [0.049°C/min]) compared with HEK (0.043°C/min [0.032°C/min]; P = .01). Mean skin temperature was lower in HEK during T1 (P < .001) and T2 (P = .05). T2 thirst was lower in CON (P = .02). Muscle pain was lower in HEK in T2 (P = .03). Performance was not altered (P > .05). Conclusions: HEK improved perception but did not enhance cooling or performance following exercise in the heat. HEK is therefore not recommended to facilitate recovery, treat hyperthermia, or improve performance.


2018 ◽  
Vol 67 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Shirish Ashtekar ◽  
SukhDev Mishra ◽  
Vishal Kapadia ◽  
Pranab Nag ◽  
Gyanendra Singh

Construction workers are at high risk of heat-related illnesses during summer months in India. The personal cooling garment (PCG) is a microclimate assistive device that provides protection from heat stress. The applicability and efficacy of wearing PCG for the physiological and subjective responses were tested on 29 healthy construction workers at actual field worksites. During the test, the climatic conditions were 103.64 ± 38.3°F dry bulb temperature, 41.2 ± 13.4% relative humidity, and wet bulb globe temperature 91.43 ± 39.92°F. Mean weighted skin temperature was significantly lowered by 38.66 ± 33.98°F when wearing PCG as compared with wearing habitual clothing (HC), 32.36 ± 33.44°F ( p < .05). Mean sweat loss was also significantly lower when wearing PCG: 0.365 ± 0.257 kg as compared with wearing HC: 0.658 ± 0.342 kg ( p < .05). Heart rate, along with back and chest skin temperatures were significantly reduced with wearing PCG. The present study suggests that PCG provides an affordable way of alleviating the discomfort and physiological strain caused by environmental heat exposure.


Sign in / Sign up

Export Citation Format

Share Document