scholarly journals Reallocation of time between device-measured movement behaviours and risk of incident cardiovascular disease

2021 ◽  
pp. bjsports-2021-104050
Author(s):  
Rosemary Walmsley ◽  
Shing Chan ◽  
Karl Smith-Byrne ◽  
Rema Ramakrishnan ◽  
Mark Woodward ◽  
...  

ObjectiveTo improve classification of movement behaviours in free-living accelerometer data using machine-learning methods, and to investigate the association between machine-learned movement behaviours and risk of incident cardiovascular disease (CVD) in adults.MethodsUsing free-living data from 152 participants, we developed a machine-learning model to classify movement behaviours (moderate-to-vigorous physical activity behaviours (MVPA), light physical activity behaviours, sedentary behaviour, sleep) in wrist-worn accelerometer data. Participants in UK Biobank, a prospective cohort, were asked to wear an accelerometer for 7 days, and we applied our machine-learning model to classify their movement behaviours. Using compositional data analysis Cox regression, we investigated how reallocating time between movement behaviours was associated with CVD incidence.ResultsIn leave-one-participant-out analysis, our machine-learning method classified free-living movement behaviours with mean accuracy 88% (95% CI 87% to 89%) and Cohen’s kappa 0.80 (95% CI 0.79 to 0.82). Among 87 498 UK Biobank participants, there were 4105 incident CVD events. Reallocating time from any behaviour to MVPA, or reallocating time from sedentary behaviour to any behaviour, was associated with lower CVD risk. For an average individual, reallocating 20 min/day to MVPA from all other behaviours proportionally was associated with 9% (95% CI 7% to 10%) lower risk, while reallocating 1 hour/day to sedentary behaviour from all other behaviours proportionally was associated with 5% (95% CI 3% to 7%) higher risk.ConclusionMachine-learning methods classified movement behaviours accurately in free-living accelerometer data. Reallocating time from other behaviours to MVPA, and from sedentary behaviour to other behaviours, was associated with lower risk of incident CVD, and should be promoted by interventions and guidelines.

2020 ◽  
Author(s):  
Rosemary Walmsley ◽  
Shing Chan ◽  
Karl Smith-Byrne ◽  
Rema Ramakrishnan ◽  
Mark Woodward ◽  
...  

AbstractBackgroundModerate-to-vigorous physical activity (MVPA), light physical activity, sedentary behaviour and sleep have all been associated with cardiovascular disease (CVD). Due to challenges in measuring and analysing movement behaviours, there is uncertainty about how the association with incident CVD varies with the time spent in these different movement behaviours.MethodsWe developed a machine-learning model (Random Forest smoothed by a Hidden Markov model) to classify sleep, sedentary behaviour, light physical activity and MVPA from accelerometer data. The model was developed using data from a free-living study of 152 participants who wore an Axivity AX3 accelerometer on the wrist while also wearing a camera and completing a time use diary. Participants in UK Biobank, a prospective cohort study, were asked to wear an accelerometer (of the same type) for seven days, and we applied our machine-learning model to classify their movement behaviours. Using Compositional Data Analysis Cox regression, we investigated how reallocating time between movement behaviours was associated with CVD incidence.FindingsWe classified accelerometer data as sleep, sedentary behaviour, light physical activity or MVPA with a mean accuracy of 88% (95% CI: 87, 89) and Cohen’s kappa of 0·80 (95% CI: 0·79, 0·82). Among 87,509 UK Biobank participants, there were 3,424 incident CVD events. Reallocating time from any behaviour to MVPA, or reallocating time from sedentary behaviour to any behaviour, was associated with a lower risk of CVD. For example, for a hypothetical average individual, reallocating 20 minutes/day to MVPA from all other behaviours proportionally was associated with 9% (7%, 10%) lower risk of incident CVD, while reallocating 1 hour/day to sedentary behaviour was associated with 5% (3%, 7%) higher risk.InterpretationReallocating time from light physical activity, sedentary behaviour or sleep to MVPA, or reallocating time from sedentary behaviour to other behaviours, was associated with lower risk of incident CVD. Accurate classification of movement behaviours using machine-learning and statistical methods to address the compositional nature of movement behaviours enabled these insights. Public health interventions and guidelines should promote reallocating time to MVPA from other behaviours, as well as reallocating time from sedentary behaviour to light physical activity.FundingMedical Research Council.


2020 ◽  
Author(s):  
Benjamin Lam ◽  
Michael Catt ◽  
Sophie Cassidy ◽  
Jaume Bacardit ◽  
Philip Darke ◽  
...  

BACKGROUND Between 2013 and 2015, the UK Biobank collected accelerometer traces using wrist-worn triaxial accelerometers for 103,712 volunteers aged between 40 and 69, for one week each. This dataset has been used in the past to verify that individuals with chronic diseases exhibit reduced activity levels compared to healthy populations. Yet, the dataset is likely to be noisy, as the devices were allocated to participants without a specific set of inclusion criteria, and the traces reflect uncontrolled free-living conditions. OBJECTIVE To determine the extent to which accelerometer traces can be used to distinguish individuals with Type-2 Diabetes (T2D) from normoglycaemic controls, and to quantify their limitations. METHODS Supervised machine learning classifiers were trained using the different sets of features, to segregate T2D positive individuals from normoglycaemic individuals. Multiple criteria, based on a combination of self-assessment UKBiobank variables and primary care health records linked to the participants in UKBiobank, were used to identify 3,103 individuals in this population who have T2D. The remaining non-diabetic 19,852 participants were further scored on their physical activity impairment severity levels based on other conditions found in their primary care data, and those likely to have been physically impaired at the time were excluded. Physical activity features were first extracted from the raw accelerometer traces dataset for each participant, using an algorithm that extends the previously developed Biobank Accelerometry Analysis toolkit from Oxford University [1]. These features were complemented by a selected collection of socio-demographic and lifestyle features available from UK Biobank. RESULTS Three types of classifiers were tested, with AUC close to[0.86; 95% CI: .85-.87] for all three, and F1 scores in the range [.80,.82] for T2D positives and [.73,.74] for controls. Results obtained using non-physically impaired controls were compared to highly physically impaired controls, to test the hypothesis that non-diabetes conditions reduce classifier performance. Models built using a training set that includes highly impaired controls with other conditions had worse performance: AUC [.75-.77; 95% CI: .74-.78] and F1 in the range [.76-.77] (positives) and [.63,.65] (controls). CONCLUSIONS Granular measures of free-living physical activity can be used to successfully train machine learning models that are able to discriminate between T2D and normoglycaemic controls, albeit with limitations due to the intrinsic noise in the datasets. In a broader, clinical perspective, these findings motivate further research into the use of physical activity traces as a means to screen individuals at risk of diabetes and for early detection, in conjunction with routinely used risk scores, provided that appropriate quality control is enforced on the data collection protocol in order to improve the signal-to-noise ratio. CLINICALTRIAL


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3976
Author(s):  
Matthew N. Ahmadi ◽  
Margaret E. O’Neil ◽  
Emmah Baque ◽  
Roslyn N. Boyd ◽  
Stewart G. Trost

Pattern recognition methodologies, such as those utilizing machine learning (ML) approaches, have the potential to improve the accuracy and versatility of accelerometer-based assessments of physical activity (PA). Children with cerebral palsy (CP) exhibit significant heterogeneity in relation to impairment and activity limitations; however, studies conducted to date have implemented “one-size fits all” group (G) models. Group-personalized (GP) models specific to the Gross Motor Function Classification (GMFCS) level and fully-personalized (FP) models trained on individual data may provide more accurate assessments of PA; however, these approaches have not been investigated in children with CP. In this study, 38 children classified at GMFCS I to III completed laboratory trials and a simulated free-living protocol while wearing an ActiGraph GT3X+ on the wrist, hip, and ankle. Activities were classified as sedentary, standing utilitarian movements, or walking. In the cross-validation, FP random forest classifiers (99.0–99.3%) exhibited a significantly higher accuracy than G (80.9–94.7%) and GP classifiers (78.7–94.1%), with the largest differential observed in children at GMFCS III. When evaluated under free-living conditions, all model types exhibited significant declines in accuracy, with FP models outperforming G and GP models in GMFCS levels I and II, but not III. Future studies should evaluate the comparative accuracy of personalized models trained on free-living accelerometer data.


10.2196/18142 ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. e18142
Author(s):  
Ramin Mohammadi ◽  
Mursal Atif ◽  
Amanda Jayne Centi ◽  
Stephen Agboola ◽  
Kamal Jethwani ◽  
...  

Background It is well established that lack of physical activity is detrimental to the overall health of an individual. Modern-day activity trackers enable individuals to monitor their daily activities to meet and maintain targets. This is expected to promote activity encouraging behavior, but the benefits of activity trackers attenuate over time due to waning adherence. One of the key approaches to improving adherence to goals is to motivate individuals to improve on their historic performance metrics. Objective The aim of this work was to build a machine learning model to predict an achievable weekly activity target by considering (1) patterns in the user’s activity tracker data in the previous week and (2) behavior and environment characteristics. By setting realistic goals, ones that are neither too easy nor too difficult to achieve, activity tracker users can be encouraged to continue to meet these goals, and at the same time, to find utility in their activity tracker. Methods We built a neural network model that prescribes a weekly activity target for an individual that can be realistically achieved. The inputs to the model were user-specific personal, social, and environmental factors, daily step count from the previous 7 days, and an entropy measure that characterized the pattern of daily step count. Data for training and evaluating the machine learning model were collected over a duration of 9 weeks. Results Of 30 individuals who were enrolled, data from 20 participants were used. The model predicted target daily count with a mean absolute error of 1545 (95% CI 1383-1706) steps for an 8-week period. Conclusions Artificial intelligence applied to physical activity data combined with behavioral data can be used to set personalized goals in accordance with the individual’s level of activity and thereby improve adherence to a fitness tracker; this could be used to increase engagement with activity trackers. A follow-up prospective study is ongoing to determine the performance of the engagement algorithm.


Author(s):  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bårdstu ◽  
Ellen Marie Bardal ◽  
Håkon S. Kjærnli ◽  
...  

Introduction: Accelerometer-based measurements of physical activity types are commonly used to replace self-reports. To advance the field, it is desirable that such measurements allow accurate detection of key daily physical activity types. This study aimed to evaluate the performance of a machine learning classifier for detecting sitting, standing, lying, walking, running, and cycling based on a dual versus single accelerometer setups during free-living. Methods: Twenty-two adults (mean age [SD, range] 38.7 [14.4, 25–68] years) were wearing two Axivity AX3 accelerometers positioned on the low back and thigh along with a GoPro camera positioned on the chest to record lower body movements during free-living. The labeled videos were used as ground truth for training an eXtreme Gradient Boosting classifier using window lengths of 1, 3, and 5 s. Performance of the classifier was evaluated using leave-one-out cross-validation. Results: Total recording time was ∼38 hr. Based on 5-s windowing, the overall accuracy was 96% for the dual accelerometer setup and 93% and 84% for the single thigh and back accelerometer setups, respectively. The decreased accuracy for the single accelerometer setup was due to a poor precision in detecting lying based on the thigh accelerometer recording (77%) and standing based on the back accelerometer recording (64%). Conclusion: Key daily physical activity types can be accurately detected during free-living based on dual accelerometer recording, using an eXtreme Gradient Boosting classifier. The overall accuracy decreases marginally when predictions are based on single thigh accelerometer recording, but detection of lying is poor.


Data is the most crucial component of a successful ML system. Once a machine learning model is developed, it gets obsolete over time due to presence of new input data being generated every second. In order to keep our predictions accurate we need to find a way to keep our models up to date. Our research work involves finding a mechanism which can retrain the model with new data automatically. This research also involves exploring the possibilities of automating machine learning processes. We started this project by training and testing our model using conventional machine learning methods. The outcome was then compared with the outcome of those experiments conducted using the AutoML methods like TPOT. This helped us in finding an efficient technique to retrain our models. These techniques can be used in areas where people do not deal with the actual working of a ML model but only require the outputs of ML processes


2021 ◽  
Author(s):  
Chen Bai ◽  
Yu-Peng Chen ◽  
Adam Wolach ◽  
Lisa Anthony ◽  
Mamoun Mardini

BACKGROUND Frequent spontaneous facial self-touches, predominantly during outbreaks, have the theoretical potential to be a mechanism of contracting and transmitting diseases. Despite the recent advent of vaccines, behavioral approaches remain an integral part of reducing the spread of COVID-19 and other respiratory illnesses. Real-time biofeedback of face touching can potentially mitigate the spread of respiratory diseases. The gap addressed in this study is the lack of an on-demand platform that utilizes motion data from smartwatches to accurately detect face touching. OBJECTIVE The aim of this study was to utilize the functionality and the spread of smartwatches to develop a smartwatch application to identifying motion signatures that are mapped accurately to face touching. METHODS Participants (n=10, 50% women, aged 20-83) performed 10 physical activities classified into: face touching (FT) and non-face touching (NFT) categories, in a standardized laboratory setting. We developed a smartwatch application on Samsung Galaxy Watch to collect raw accelerometer data from participants. Then, data features were extracted from consecutive non-overlapping windows varying from 2-16 seconds. We examined the performance of state-of-the-art machine learning methods on face touching movements recognition (FT vs NFT) and individual activity recognition (IAR): logistic regression, support vector machine, decision trees and random forest. RESULTS Machine learning models were accurate in recognizing face touching categories; logistic regression achieved the best performance across all metrics (Accuracy: 0.93 +/- 0.08, Recall: 0.89 +/- 0.16, Precision: 0.93 +/- 0.08, F1-score: 0.90 +/- 0.11, AUC: 0.95 +/- 0.07) at the window size of 5 seconds. IAR models resulted in lower performance; the random forest classifier achieved the best performance across all metrics (Accuracy: 0.70 +/- 0.14, Recall: 0.70 +/- 0.14, Precision: 0.70 +/- 0.16, F1-score: 0.67 +/- 0.15) at the window size of 9 seconds. CONCLUSIONS Wearable devices, powered with machine learning, are effective in detecting facial touches. This is highly significant during respiratory infection outbreaks, as it has a great potential to refrain people from touching their faces and potentially mitigate the possibility of transmitting COVID-19 and future respiratory diseases.


Sign in / Sign up

Export Citation Format

Share Document