Specific cell differentiation in breast cancer: a basis for histological classification

2021 ◽  
pp. jclinpath-2021-207487
Author(s):  
Emad Rakha ◽  
Michael Toss ◽  
Cecily Quinn

Breast parenchyma progenitor cells show a high degree of phenotypic plasticity reflected in the wide range of morphology observed in benign and malignant breast tumours. Although there is evidence suggesting that all breast cancer (BC) arises from a common epithelial progenitor or stem cell located at the terminal duct lobular units (TDLUs), BC shows a broad spectrum of morphology with extensive variation in histological type and grade. This is related to the complexity of BC carcinogenesis including initial genetic changes in the cell of origin, subsequent genetic and epigenetic alterations and reprogramming that occur at various stages of BC development and the interplay with the surrounding microenvironment, factors which influence the process of differentiation. Differentiation in BC determines the morphology, which can be measured using histological grade and tumour type. Histological grade, which measures the similarity to the TDLUs, reflects the degree of differentiation whereas tumour type reflects the type of differentiation. Understanding BC phenotypic differentiation facilitates the accurate diagnosis and histological classification of BC with corresponding clinical implications in terms of disease behaviour, prognosis and management plans. In this review, we highlight the potential pathways that BC stem cells follow resulting in the development of different histological types of BC and how knowledge of these pathways impacts our ability to classify BC in diagnostic practice. We also discuss the role of cellular differentiation in producing metaplastic and neuroendocrine carcinomas of the breast and how the latter differ from their counterparts in other organs, with emphasis on clinical relevance.

1993 ◽  
Vol 11 (2-3) ◽  
pp. 91-101 ◽  
Author(s):  
P. D. Rye ◽  
R. A. Walker

The tissue distribution and specificity of a glycoprotein of Mr230 OOOkDa which has previously been identified from breast carcinomas in culture and shown to be tumour-associated, has been assessed using a polyclonal antiserum. A wide range of tissues has been examined immunohistochemically. The tissue distribution of the glycoprotein show differences between normal, benign and malignant breast and other epithelial tissues, and are clearly specific for epithelial cells. This glycoprotein as detected by the polyclonal antiserum P5252-2, was either absent or showed a minimal presence in normal breast tissues. Evidence of the expression of the glycoprotein in hyperplastic breast was observed but was considerably less than that seen for carcinomas, for which 70% had greater than 50% of cells exhibiting reactivity with P5252-2. There was no relationship with grade or node status. Similar striking differences in glycoprotein expression between non-neoplastic and neoplastic tissue were observed for stomach, large intestine, thyroid and to lesser extent ovary. The di fferences in the expression of this glycoprotein between normal and malignant tissues is of obvious clinical and pathological potential.


2019 ◽  
Vol 16 (7) ◽  
pp. 808-817 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background: In spite of the availability of various treatment approaches including surgery, radiotherapy, and hormonal therapy, the steroidal aromatase inhibitors (SAIs) play a significant role as chemotherapeutic agents for the treatment of estrogen-dependent breast cancer with the benefit of reduced risk of recurrence. However, due to greater toxicity and side effects associated with currently available anti-breast cancer agents, there is emergent requirement to develop target-specific AIs with safer anti-breast cancer profile. Methods: It is challenging task to design target-specific and less toxic SAIs, though the molecular modeling tools viz. molecular docking simulations and QSAR have been continuing for more than two decades for the fast and efficient designing of novel, selective, potent and safe molecules against various biological targets to fight the number of dreaded diseases/disorders. In order to design novel and selective SAIs, structure guided molecular docking assisted alignment dependent 3D-QSAR studies was performed on a data set comprises of 22 molecules bearing steroidal scaffold with wide range of aromatase inhibitory activity. Results: 3D-QSAR model developed using molecular weighted (MW) extent alignment approach showed good statistical quality and predictive ability when compared to model developed using moments of inertia (MI) alignment approach. Conclusion: The explored binding interactions and generated pharmacophoric features (steric and electrostatic) of steroidal molecules could be exploited for further design, direct synthesis and development of new potential safer SAIs, that can be effective to reduce the mortality and morbidity associated with breast cancer.


2019 ◽  
Vol 19 (5) ◽  
pp. 599-609 ◽  
Author(s):  
Sumathi Sundaravadivelu ◽  
Sonia K. Raj ◽  
Banupriya S. Kumar ◽  
Poornima Arumugamand ◽  
Padma P. Ragunathan

Background: Functional foods, neutraceuticals and natural antioxidants have established their potential roles in the protection of human health and diseases. Thymoquinone (TQ), the main bioactive component of Nigella sativa seeds (black cumin seeds), a plant derived neutraceutical was used by ancient Egyptians because of their ability to cure a variety of health conditions and used as a dietary food supplement. Owing to its multi targeting nature, TQ interferes with a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Additionally, TQ can specifically sensitize tumor cells towards conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy) and simultaneously minimize therapy-associated toxic effects in normal cells besides being cost effective and safe. TQ was found to play a protective role when given along with chemotherapeutic agents to normal cells. Methods: In the present study, reverse in silico docking approach was used to search for potential molecular targets for cancer therapy. Various metastatic and apoptotic targets were docked with the target ligand. TQ was also tested for its anticancer activities for its ability to cause cell death, arrest cell cycle and ability to inhibit PARP gene expression. Results: In silico docking studies showed that TQ effectively docked metastatic targets MMPs and other apoptotic and cell proliferation targets EGFR. They were able to bring about cell death mediated by apoptosis, cell cycle arrest in the late apoptotic stage and induce DNA damage too. TQ effectively down regulated PARP gene expression which can lead to enhanced cancer cell death. Conclusion: Thymoquinone a neutraceutical can be employed as a new therapeutic agent to target triple negative breast cancer which is otherwise difficult to treat as there are no receptors on them. Can be employed along with standard chemotherapeutic drugs to treat breast cancer as a combinatorial therapy.


Author(s):  
Abdel Qader Al Bawab ◽  
Malek Zihlif ◽  
Yazan Jarrar ◽  
Ahmad Saleh

Background: Hypoxia (deprived oxygen in tissues) may induce molecular and genetic changes in cancer cells. Objective: Investigating the genetic changes of glucose metabolism in breast cancer cell line (MCF7) after exposure to continuous hypoxia (10 and 20 cycles exposure of 72 hours continuously on a weekly basis). Method: Gene expression of MCF7 cells was evaluated using real-time polymerase chain reaction- array method. Furthermore, cell migration and wound healing assays were also applied. Results: It was found that 10 episodes of continuous hypoxia activated Warburg effect in MCF7 cells via the significant up-regulation of genes involved in glycolysis (ANOVA, p value < 0.05). The molecular changes were associated with the ability of MCF7 cells to divide and migrate. Interestingly, after 20 episodes of continuous hypoxia, the expression glycolysis mediated genes has dropped significantly (from 30 to 9 folds). This could be attributed to the adaptive ability of cancer cells. Conclusion: It is concluded that 10 hypoxic episodes increased the survival rate and the aggressiveness of MCF7 cells and induced Warburg effect by up-regulation of the glycolysis mediating genes expression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mindaugas Morkunas ◽  
Dovile Zilenaite ◽  
Aida Laurinaviciene ◽  
Povilas Treigys ◽  
Arvydas Laurinavicius

AbstractWithin the tumor microenvironment, specifically aligned collagen has been shown to stimulate tumor progression by directing the migration of metastatic cells along its structural framework. Tumor-associated collagen signatures (TACS) have been linked to breast cancer patient outcome. Robust and affordable methods for assessing biological information contained in collagen architecture need to be developed. We have developed a novel artificial neural network (ANN) based approach for tumor collagen segmentation from bright-field histology images and have tested it on a set of tissue microarray sections from early hormone receptor-positive invasive ductal breast carcinoma stained with Sirius Red (1 core per patient, n = 92). We designed and trained ANNs on sets of differently annotated image patches to segment collagen fibers and extracted 37 features of collagen fiber morphometry, density, orientation, texture, and fractal characteristics in the entire cohort. Independent instances of ANN models trained on highly differing annotations produced reasonably concordant collagen segmentation masks and allowed reliable prognostic Cox regression models (with likelihood ratios 14.11–22.99, at p-value < 0.05) superior to conventional clinical parameters (size of the primary tumor (T), regional lymph node status (N), histological grade (G), and patient age). Additionally, we noted statistically significant differences of collagen features between tumor grade groups, and the factor analysis revealed features resembling the TACS concept. Our proposed method offers collagen framework segmentation from bright-field histology images and provides novel image-based features for better breast cancer patient prognostication.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1417
Author(s):  
Binafsha M. Syed ◽  
Andrew R. Green ◽  
Emad A. Rakha ◽  
David A.L. Morgan ◽  
Ian O. Ellis ◽  
...  

As age advances, breast cancer (BC) tends to change its biological characteristics. This study aimed to explore the natural progression of such changes. The study included 2383 women with clinically T0-2N0-1M0 BC, managed by primary surgery and optimal adjuvant therapy in a dedicated BC facility. Tissue micro-arrays were constructed from their surgical specimens and indirect immunohistochemistry was used for analysis of a large panel (n = 16) of relevant biomarkers. There were significant changes in the pattern of expression of biomarkers related to luminal (oestrogen receptor (ER), progesterone receptors (PgR), human epidermal growth factor receptor (HER-2), E-cadherin, MUC1, bcl2 CK7/8, CK18 and bcl2) and basal (CK5/6, CK14, p53 and Ki67) phenotypes, lymph node stage, histological grade and pathological size when decade-wise comparison was made (p < 0.05). The ages of 40 years and 70 years appeared to be the milestones marking a change of the pattern. There were significantly higher metastasis free and breast cancer specific survival rates among older women with ER positive tumours while there was no significant difference in the ER negative group according to age. Biological characteristics of BC show a pattern of change with advancing age, where 40 years and 70 years appear as important milestones. The pattern suggests <40 years as the phase with aggressive phenotypes, >70 years as the less aggressive phase and 40–70 years being the transitional phase.


Sign in / Sign up

Export Citation Format

Share Document