Indoleamine 2,3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells

2019 ◽  
Vol 68 (3) ◽  
pp. 728-737 ◽  
Author(s):  
Ji-Gang He ◽  
Bei-Bei Li ◽  
Liang Zhou ◽  
Dan Yan ◽  
Qiao-Li Xie ◽  
...  

Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.

Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3325-3333 ◽  
Author(s):  
Cécile Guillot ◽  
Séverine Ménoret ◽  
Carole Guillonneau ◽  
Cécile Braudeau ◽  
Maria G. Castro ◽  
...  

Abstract Costimulatory blockade using cytotoxic T lymphocyte–associated antigen 4 immunoglobulin (CTLA4Ig) efficiently down-regulates immune responses in animal models and is currently used in autoimmune and transplantation clinical trials, but the precise cellular and molecular mechanisms involved remain unclear. Rats that received allogeneic heart transplants and were treated with adenoviruses coding for CTLA4Ig show long-term allograft survival. The immune mechanisms regulating induction of long-term allograft acceptance were analyzed in splenocytes using mixed leukocyte reactions (MLRs). MLRs of splenocytes but not purified T cells from CTLA4Ig-treated rats showed higher than 75% inhibition compared with controls. Splenocytes from CTLA4Ig-treated rats inhibited proliferation of naive and allogeneically primed splenocytes or T cells. MLR suppression was dependent on soluble secreted product(s). Production of soluble inhibitory product(s) was triggered by a donor antigen-specific stimulation and inhibited proliferation in an antigen-nonspecific manner. CTLA4Ig levels in the culture supernatant were undetectable and neither interleukin-10 (IL-10), transforming growth factor β1 (TGFβ1), IL-4, nor IL-13 were responsible for suppression of MLRs. Inhibition of nitrous oxide (NO) production or addition of IL-2 could not restore proliferation independently, but the combined treatment synergistically induced proliferation comparable with controls. Stimulation of APCs using tumor necrosis factor (TNF)–related activation-induced cytokine (TRANCE) or CD40L and addition of IL-2 normalized MLRs of CTLA4Ig-treated splenocytes. Finally, dendritic cells (DCs), but not T cells, from CTLA4Ig-treated rats inhibited naive MLRs. Altogether, these results provide evidence that after in vivo CTLA4Ig treatment, splenocytes, and in particular DCs, can inhibit alloantigen-induced proliferative responses through secretion of inhibitory products, thus promoting alloantigen-specific tolerance in vivo.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 228-234 ◽  
Author(s):  
Kazuya Sato ◽  
Katsutoshi Ozaki ◽  
Iekuni Oh ◽  
Akiko Meguro ◽  
Keiko Hatanaka ◽  
...  

Abstract The molecular mechanisms by which mesenchymal stem cells (MSCs) suppress T-cell proliferation are poorly understood, and whether a soluble factor plays a major role remains controversial. Here we demonstrate that the T-cell–receptor complex is not a target for the suppression, suggesting that downstream signals mediate the suppression. We found that Stat5 phosphorylation in T cells is suppressed in the presence of MSCs and that nitric oxide (NO) is involved in the suppression of Stat5 phosphorylation and T-cell proliferation. The induction of inducible NO synthase (NOS) was readily detected in MSCs but not T cells, and a specific inhibitor of NOS reversed the suppression of Stat5 phosphorylation and T-cell proliferation. This production of NO in the presence of MSCs was mediated by CD4 or CD8 T cells but not by CD19 B cells. Furthermore, inhibitors of prostaglandin synthase or NOS restored the proliferation of T cells, whereas an inhibitor of indoleamine 2,3-dioxygenase and a transforming growth factor–β–neutralizing antibody had no effect. Finally, MSCs from inducible NOS−/− mice had a reduced ability to suppress T-cell proliferation. Taken together, these results suggest that NO produced by MSCs is one of the major mediators of T-cell suppression by MSCs.


2022 ◽  
Vol 12 (2) ◽  
pp. 405-410
Author(s):  
Lian Tan ◽  
Xiongxiong Wang ◽  
Danqi Chen ◽  
Li Xu ◽  
Yudong Xu ◽  
...  

Our study investigates whether miR-265 regulates the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into alveolar type II epithelial cells (ATII) through TGF-β1 and promotes lung injury repair in rats with sepsis, thereby inhibiting sepsis progression. 25 patients with sepsis admitted to the Respiratory and Critical Care Medicine Department of the hospital and 17 normal controls were included. TGF-β1 level was measured by ELISA. miR-265 level was measured by qRT-PCR and AT II-related genes and proteins expression was analyzed by western blot and qRT-PCR. miR-265 expression was significantly higher in sepsis patients than normal group. Progenitor BMSCs were long and shuttle-shaped after 1 and 3 days of growth. Cultured MSCs had low expression of the negative antigen CD34 (4.32%) and high expression of the positive antigen CD44 (99.87%). TGF-β1 level was significantly increased with longer induction time, while miR-265 expression was significantly decreased in cell culture medium. miR-265 interference significantly decreased TGF-β1 expression. In conclusion, miR-265 inhibits BMSC differentiation to AT II via regulation of TGF-β1, thereby inhibiting sepsis progression.


2020 ◽  
Vol 21 (6) ◽  
pp. 1967 ◽  
Author(s):  
Jae-Sung Ryu ◽  
Sang Young Seo ◽  
Eun-Jeong Jeong ◽  
Jong-Yeup Kim ◽  
Yong-Gon Koh ◽  
...  

Mesenchymal stem cells, also known as multipotent stromal progenitor cells, can differentiate into cells of mesodermal lineage. Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation and several signaling molecules. These molecules are localized in glycosphingolipid-enriched microdomains on the cell surface and are regulated by glycosphingolipid composition. Transforming growth factor-beta (TGF-β) signaling plays a critical role in chondrogenic differentiation. However, the role of gangliosides in chondrogenesis is not understood. In this study, the relationship between the ganglioside GM3 and TGF-β activation, during chondrogenic differentiation, was investigated using an aggregate culture of human synovial membrane-derived mesenchymal stem cells. We showed that the gangliosides GM3 and GD3 were expressed after the chondrogenic differentiation of hSMSC aggregates. To test whether GM3 affected the chondrogenic differentiation of hSMSC aggregates, we used GM3 treatment during chondrogenic differentiation. The results showed that the group treated with 5 μM GM3 had higher expression of chondrogenic specific markers, increased toluidine blue, and safranin O staining, and increased accumulation of glycosaminoglycans compared with the untreated group. Furthermore, GM3 treatment enhanced TGF-β signaling via SMAD 2/3 during the chondrogenic differentiation of hSMSC aggregates. Taken together, our results suggested that GM3 may be useful in developing therapeutic agents for cell-based articular cartilage regeneration in articular cartilage disease.


2005 ◽  
Vol 79 (23) ◽  
pp. 14526-14535 ◽  
Author(s):  
Carlos F. Narváez ◽  
Juana Angel ◽  
Manuel A. Franco

ABSTRACT We have previously shown that very few rotavirus (RV)-specific T cells that secrete gamma interferon circulate in recently infected and seropositive adults and children. Here, we have studied the interaction of RV with myeloid immature (IDC) and mature dendritic cells (MDC) in vitro. RV did not induce cell death of IDC or MDC and induced maturation of between 12 and 48% of IDC. Nonetheless, RV did not inhibit the maturation of IDC or change the expression of maturation markers on MDC. After treatment with RV, few IDC expressed the nonstructural viral protein NSP4. In contrast, a discrete productive viral infection was shown in MDC of a subset of volunteers, and between 3 and 46% of these cells expressed NSP4. RV-treated IDC secreted interleukin 6 (IL-6) (but not IL-1β, IL-8, IL-10, IL-12, tumor necrosis factor alpha, or transforming growth factor beta), and MDC released IL-6 and small amounts of IL-10 and IL-12p70. The patterns of cytokines secreted by T cells stimulated by staphylococcal enterotoxin B presented by MDC infected with RV or uninfected were comparable. The frequencies and patterns of cytokines secreted by memory RV-specific T cells evidenced after stimulation of peripheral blood mononuclear cells (PBMC) with RV were similar to those evidenced after stimulation of PBMC with RV-infected MDC. Finally, IDC treated with RV strongly stimulated naive allogeneic CD4+ T cells to secrete Th1 cytokines. Thus, although RV does not seem to be a strong maturing stimulus for DC, it promotes their capacity to prime Th1 cells.


Sign in / Sign up

Export Citation Format

Share Document