scholarly journals Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy

2020 ◽  
Vol 8 (2) ◽  
pp. e000867
Author(s):  
Zachary S Buchwald ◽  
Tahseen H Nasti ◽  
Judong Lee ◽  
Christiane S Eberhardt ◽  
Andres Wieland ◽  
...  

BackgroundRadiotherapy (RT) has been shown to stimulate an antitumor immune response in irradiated tumors as well as unirradiated distant sites (abscopal effect). Previous studies have demonstrated a role for the tumor-draining lymph node (LN) in mediating an anti-programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) stimulated antitumor immune response. Here, we investigated whether the LN is also important in mediating a RT alone stimulated abscopal response.MethodsWe used a subcutaneous modified B16F10 flank tumor model injected bilaterally. Our B16F10 cell line has an inserted viral glycoprotein which facilitated identification of tumor-specific T-cells. RT was directed at one flank tumor alone or one flank tumor and the tumor-draining LN. We evaluated response by tumor growth measurements and flow cytometry of both tumor-infiltrating and LN T-cells.ResultsWe show that local tumor irradiation improves distant tumor control (abscopal effect). Depletion of CD8+ T-cells significantly reduced this abscopal response. We have previously shown, in a chronic lymphocytic choriomeningitis virus (LCMV) infection, that the T-cell proliferative burst following blockade of PD-1/L1 is provided by a ‘stem-like’ CD8+ T-cell subset which then differentiate into terminally differentiated effectors. These terminally differentiated effectors have the potential to kill virally infected or tumor cells following PD-1/L1 blockade. In the chronic LCMV infection, stem-like CD8+ T-cells were found exclusively in secondary lymphoid organs. Similarly, here we found these cells at high frequencies in the tumor-draining LN, but at low frequencies within the tumor. The effect of RT on this T-cell subset in unknown. Interestingly, tumor irradiation stimulated total CD8+ and stem-like CD8+ T-cell proliferation in the LN. When the LN and the tumor were then targeted with RT, the abscopal effect was reduced, and we found a concomitant reduction in the number of total tumor-specific CD8+ T-cells and stem-like CD8+ T-cells in both the irradiated and unirradiated tumor.ConclusionsThese correlative results suggest the tumor-draining LN may be an important mediator of the abscopal effect by serving as a stem-like CD8+ T-cell reservoir, a site for stem-like T-cell expansion, and a site from which they can populate the tumor.

2019 ◽  
Author(s):  
Zachary S. Buchwald ◽  
Tahseen H. Nasti ◽  
Christiane S. Eberhardt ◽  
Andreas Wieland ◽  
David Lawson ◽  
...  

2021 ◽  
Author(s):  
Kelli A. Connolly ◽  
Manik Kuchroo ◽  
Aarthi Venkat ◽  
Achia Khatun ◽  
Jiawei Wang ◽  
...  

Abstract“Stem-like” TCF1+ CD8+ T cells (TSL) are necessary for long-term maintenance of T cell responses and the efficacy of immunotherapy but, as tumors contain signals that should drive T-cell terminal-differentiation, how these cells are maintained in tumors remains unclear. We found that a small number of TCF1+ tumor-specific CD8+ T cells were present in tumors throughout development. Yet, most intratumoral T cells differentiated as tumors progressed, corresponding with an immunologic shift in the tumor microenvironment (TME) from “hot” to “cold”. By contrast, most tumor-specific CD8+ T cells in tumor-draining lymph nodes (dLNs) had functions and gene expression signatures similar to TSL from chronic LCMV infection and this population was stable over time, despite the changes in the TME. dLN T cells were the precursors of their more-differentiated intratumoral counterparts, and maintenance of TCF1 by intratumoral T cells required continuous migration from dLNs. Finally, TSL CD8 T cells were also present in LNs from lung adenocarcinoma patients, suggesting this population is also relevant in human disease. Thus, we propose that the dLN TSL reservoir has a critical function during tumor development in sustaining antitumor T cells during tumor development and protecting them from the terminal differentiation that occurs in the TME.


2002 ◽  
Vol 83 (9) ◽  
pp. 2123-2133 ◽  
Author(s):  
Nanna Ny Kristensen ◽  
Jan Pravsgaard Christensen ◽  
Allan Randrup Thomsen

Using infections with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus in mice as model systems, we have investigated the ability of antigen-primed CD8+ T cells generated in the context of viral infections to produce IL-2. Our results indicate that acute immunizing infection normally leads to generation of high numbers of IL-2-producing antigen-specific CD8+ T cells. By costaining for IL-2 and IFN-γ intracellularly, we found that IL-2-producing cells predominantly constitute a subset of cells also producing IFN-γ. Comparison of the kinetics of generation revealed that IL-2-producing cells appear slightly delayed compared with the majority of IFN-γ producing cells, and the relative frequency of the IL-2-producing subset increases with transition into the memory phase. In contrast to acute immunizing infection, few IL-2-producing cells are generated during chronic LCMV infection. Furthermore, in MHC class II-deficient mice, which only transiently control LCMV infection, IL-2-producing CD8+ T cells are initially generated, but by 4 weeks after infection this subset has nearly disappeared. Eventually the capacity to produce IFN-γ also becomes impaired, while cell numbers are maintained at a level similar to those in wild-type mice controlling the infection. Taken together, these findings indicate that phenotyping of T cell populations based on capacity to produce cytokines, and especially IL-2, can provide important information as to the functional status of the analysed cell subset. Specifically, combined analysis of the capacity to produce IL-2 and IFN-γ can be used as a predictor for loss of function within the CD8+ T cell compartment.


2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Yun Min Chang ◽  
Andreas Wieland ◽  
Zheng-rong Li ◽  
Se Jin Im ◽  
Donald J. McGuire ◽  
...  

ABSTRACT Recent studies on chronic viral infections have defined a novel programmed cell death 1-positive (PD-1+) T cell factor 1-positive (TCF1+) stem-like CD8 T cell subset that gives rise to the terminally differentiated exhausted CD8 T cells. In this study, we performed T cell receptor beta (TCRβ) sequencing of virus-specific CD8 T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection to examine the TCR diversity and lineage relationship of these two functionally distinct subsets. We found that >95% of the TCR repertoire of the exhausted CD8 T cell subset was shared with the stem-like CD8 T cells. The TCR repertoires of both CD8 T cell subsets were composed mostly of a few dominant clonotypes, but there was slightly more breadth and diversity in the stem-like CD8 T cells than their exhausted counterpart (∼40 versus ∼15 GP33+ clonotypes; ∼20 versus ∼7 GP276+ clonotypes). Interestingly, the breadth of the TCR repertoire was broader during the early stages (day 8) of the chronic infection than the later stages (days 45 to 60), showing that there was a narrowing of the TCR repertoire during chronic infection (∼2-fold GP33+ and GP276+ stem-like subset; ∼10-fold GP33+ and ∼5-fold GP276+ exhausted subset). In contrast, during acute LCMV infection, the TCR repertoire was much broader in both GP33-specific effector (∼160 clonotypes) and memory CD8 T cells (∼160 clonotypes). Overall, our data demonstrate that the virus-specific CD8 T cell TCR repertoire is broad and remains stable after acute LCMV infection, but it contracts and is narrower during chronic infection. Our study also shows that the repertoire of the exhausted CD8 T cell subset is almost completely derived from the stem-like CD8 T cell subset during established chronic LCMV infection. IMPORTANCE CD8 TCR repertoires responding to chronic viral infections (HIV, hepatitis C virus [HCV], Epstein-Barr virus [EBV], and cytomegalovirus [CMV]) have limited breadth and diversity. How these repertoires change and are maintained throughout the chronic infection are unknown. We thus characterized the LCMV-specific CD8 TCR repertoires of stem-like and terminally exhausted subsets generated during chronic LCMV infections. During chronic LCMV infections, the repertoires started as diverse but became more clonal at the late time point. Further, the exhausted subset was composed of dominant clonotypes that were shared with the stem-like subset. Together, we demonstrate that the TCR repertoire contracts over time and is almost exclusively derived from the stem-like subset late during the persistent viral infection. Our data suggest that dominant clonotypes in the exhausted subset are derived from a diverse pool of stem-like clonotypes, which may be contributing to the clonality observed during chronic viral infections.


2019 ◽  
Author(s):  
Zachary S. Buchwald ◽  
Tahseen H. Nasti ◽  
Christiane S. Eberhardt ◽  
Andreas Wieland ◽  
David Lawson ◽  
...  

2018 ◽  
Author(s):  
Shuhao Zhang ◽  
Shyamal Goswami ◽  
Jiaqiang Ma ◽  
Lu Meng ◽  
Youping Wang ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Min Deng ◽  
Shao-Hua Li ◽  
Xu Fu ◽  
Xiao-Peng Yan ◽  
Jun Chen ◽  
...  

Abstract Background Programmed death- ligand 1 (PD-L1) seems to be associated with the immune escape of tumors, and immunotherapy may be a favorable treatment for PD-L1-positive patients. We evaluated intrahepatic cholangiocarcinoma (ICC) specimens for their expression of PD-L1, infiltration of CD8+ T cells, and the relationship between these factors and patient survival. Methods In total, 69 resections of ICC were stained by immunohistochemistry for PD-L1, programmed death factor-1 (PD-1), and CD8+ T cells. CD8+ T-cell densities were analyzed both within tumors and at the tumor-stromal interface. Patient survival was predicted based on the PD-L1 status and CD8+ T-cell density. Results The expression rate of PD-L1 was 12% in cancer cells and 51% in interstitial cells. The expression rate of PD-1 was 30%, and the number of CD8+ T-cells increased with the increase of PD-L1 expression (p < 0.05). The expression of PD-L1 in the tumor was correlated with poor overall survival(OS) (p = 0.004), and the number of tumor and interstitial CD8+ T-cells was correlated with poor OS and disease-free survival (DFS) (All p < 0.001). Conclusions The expression of PD-L1 in the tumor is related to poor OS, and the number of tumor or interstitial CD8+ T-cells is related to poor OS and DFS. For patients who lose their chance of surgery, PD-L1 immunosuppressive therapy may be the focus of future research as a potential treatment.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3662-3672 ◽  
Author(s):  
Nobukazu Watanabe ◽  
Stephen C. De Rosa ◽  
Anthony Cmelak ◽  
Richard Hoppe ◽  
Leonore A. Herzenberg ◽  
...  

Abstract We investigated the representation of T cells in patients who had been treated for Hodgkin's disease (HD). We found a marked depletion in both CD4 and CD8 naive T-cell counts that persists up to 30 years after completion of treatment. In contrast, CD4 and CD8 memory T-cell subsets recovered to normal or above normal levels by 5 years posttreatment. Thus, the previously-reported long-term deficit in total CD4 T-cell counts after treatment for HD is due to specific depletion of naive T cells. Similarly, total CD8 T-cell counts return to normal by 5 years only because CD8 memory T cells expand to higher than normal levels. These findings suggest that the treatment (mediastinal irradiation) results in a longterm dysregulation of T-cell subset homeostasis. The profound depletion of naive T cells may explain the altered T-cell function in treated patients, including the poor response to immunization after treatment for HD. Further, in some individuals, we identified expansions of unusual subsets expressing low levels of CD8. Eight-color fluorescence-activated cell sorting analyses showed that these cells largely express CD8αα homodimers and CD57, consistent with the phenotype of potentially extrathymically derived T cells. In addition, these cells, both CD4+ and CD4−, are probably cytotoxic lymphocytes, as they express high levels of intracellular perforin. In adults treated for HD, an increased activity of extrathymic T-cell differentiation may partially compensate for the loss of thymic-derived T cells.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. eaay0524 ◽  
Author(s):  
Mohamed A. ElTanbouly ◽  
Yanding Zhao ◽  
Elizabeth Nowak ◽  
Jiannan Li ◽  
Evelien Schaafsma ◽  
...  

Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.


Sign in / Sign up

Export Citation Format

Share Document