17 Activity sensors for noninvasive monitoring of immune response and tumor resistance during immune checkpoint blockade therapy

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A17-A17
Author(s):  
Quoc Mac ◽  
James Bowen ◽  
Hathaichanok Phuengkham ◽  
Anirudh Sivakumar ◽  
Congmin Xu ◽  
...  

BackgroundDespite the curative potential of immune checkpoint blockade (ICB) therapy, only small subsets of patients achieve tumor regression while many responders relapse and acquire resistance. Monitoring treatment response and detecting the onset of resistance are critical for improving patient prognoses. Here we engineered ICB antibody-sensor conjugates known as ICB-Dx by coupling peptides sensing the activity of granzyme B (GzmB), a T cell cytotoxic protease, directly on αPD1 antibody to monitor therapeutic responses by producing a fluorescent reporter into urine. To develop biomarkers that indicate mechanisms of resistance to ICB, we generated B2m-/- and Jak1-/- tumor models and performed transcriptomic analyses to identify unique protease signatures of these resistance mechanisms. We then built a multiplexed library of αPD1-Dx capable of detecting early therapeutic response and illuminating resistance mechanisms during ICB therapy.MethodsFITC-labeled GzmB substrates were synthesized (CEM) and conjugated to αPD1 antibody. B2m-/- and Jak1-/- tumors were generated from WT MC38 cells using CRISPR/Cas9. For tumor studies, 106 cells were inoculated s.c. in B6 mice. Tumor mice were treated with αPD1 or IgG1 isotype conjugates (0.1 mg), and urine was collected at 3 hours. Tumor RNA was isolated with RNEasy kit (Qiagen) and prepared for sequencing with TruSeq mRNA kit (Illumina).ResultsTo synthesize αPD1-Dx, we coupled FITC-labeled GzmB substrates to αPD1 antibody (figure 1a). In MC38 tumors, systemic administration of αPD1-Dx lowered tumor burden relative to control treatment while producing significantly elevated urine signals that preceded tumor regression (figure 1b, c). To investigate the ability to monitor tumor resistance to ICB, we developed knockout tumors to model B2m and Jak1 mutations, which are observed in human patients. in vivo, B2m-/- and Jak1-/- MC38 tumors were resistant to αPD1 monotherapy (figure 1d). Tumor RNA sequencing revealed that gene expression was altered during αPD1 treatment only in WT tumors. Importantly, B2m-/- tumors showed very different expression profiles than Jak1-/- tumors during αPD1 treatment, indicative of unique regulation of resistance (figure 1e). We used differential expression analyses to discover unique protease signatures associated with these two resistance mechanisms. Finally, a multiplexed library of αPD1-Dx engineered to monitor both tumor and immune proteases detected early on-treatment responses and stratified B2m-/- from Jak1-/- resistance with high diagnostic validity (figure 1f).Abstract 17 Figure 1Monitoring response and resistance with ICB-Dx(a) αPD1-Dx can reinvigorate T cell response and monitor protease activities in the tumor microenvironment. (b) Growth curves of WT MC38 tumors treated with αPD1- or IgG1-Dx (ANOVA). (c) Urine signals detect treatment response to αPD1 monotherapy (ANOVA). (d) Growth curves of B2m-/- and Jak1-/- tumors treated with αPD1- or IgG1-Dx (ANOVA). (e) TSNE plot showing RNA profiles of WT, B2m-/-, Jak1-/- tumors treated with αPD1 or isotype control. (f) ROC curves of random forest classifiers built from urine signals that differentiate on-treatment response from on-treatment resistance and B2m-/- from Jak1-/- resistance.ConclusionsWe have engineered activity sensors that accurately detect therapeutic responses and stratify resistance mechanisms noninvasively from urine, thereby potentially expanding the precision of ICB therapy to benefit cancer patients.Ethics ApprovalAll animal studies were approved by Georgia Tech IACUC (A100193)

2020 ◽  
Author(s):  
Quoc Mac ◽  
Congmin Xu ◽  
James R Bowen ◽  
Anirudh Sivakumar ◽  
Hathaichanok Phuengkham ◽  
...  

AbstractImmune checkpoint blockade (ICB) therapy has transformed the clinical care of cancer, yet the majority of patients do not derive clinical benefit and responders can acquire resistance to therapy. Noninvasive biomarkers to indicate early on-treatment response and resistance mechanisms are needed to improve patient management. We engineer activity-based synthetic biomarkers called immune sensors for monitoring checkpoint blockade therapy (INSIGHT), which comprise a library of mass-barcoded peptides conjugated to ICB antibodies (e.g., αPD1). INSIGHT allows detection of in vivo T cell and tumor protease activity by quantification of cleaved peptide fragments that have cleared into urine. αPD1-sensor conjugates monitoring the T cell protease granzyme B (GzmB) retained target binding and were capable of sensing T cell killing of cancer cells. In syngeneic tumors, systemic administration of these conjugates resulted in therapeutic efficacy comparable to unconjugated antibodies and produced elevated reporter signals in urine indicative of tumor responses by the second dose. To differentiate resistant tumors, we analyzed the transcriptomes of ICB-treated tumors for protease signatures of response and resistance and developed a multiplexed library of mass-barcoded protease sensors. This library enabled us to build machine learning classifiers based on urine signals that detected and stratified two mechanisms of resistance, B2m and Jak1 loss-of-function mutations. Our data demonstrates the potential of INSIGHT for early on-treatment response assessment and classification of refractory tumors based on resistance mechanisms.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Katrin Aslan ◽  
Verena Turco ◽  
Jens Blobner ◽  
Jana K. Sonner ◽  
Anna Rita Liuzzi ◽  
...  

Abstract Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and Treg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A249-A249
Author(s):  
Daniel Delitto ◽  
Evan Lipson ◽  
Laura Cappelli ◽  
Klaus Busam ◽  
Antony Rosen ◽  
...  

BackgroundTumor-specific antibodies have been reported in patients with cancers responding to immune checkpoint inhibitors (ICI), and there is an increasing appreciation for the potential role of B cells in mediating ICI responses. However, the humoral immune response to melanoma remains incompletely defined. We hypothesized that screening sera for antibodies by immunoprecipitation with lysates of cultured melanoma cells would increase the likelihood of detecting circulating antibodies in melanoma patients receiving ICI, and potentially identify novel antibody targets associated with treatment response and/or immune-related adverse events (IRAEs).MethodsPre-and on/post-treatment sera or plasma from 12 clinically-annotated patients with advanced metastatic melanoma receiving ICI were assayed for tumor-specific antibodies with an established immunoprecipitation platform. 35S-methionine-labeled lysates from cultured 624Mel cells were used for immunoprecipitation. 624Mel expresses several shared non-mutated melanoma antigens (e.g., MAGEA3, tyrosinase, MART-1/Melan-A, gp75, and gp100). Antigen identity was determined using on-bead digests followed by mass spectrometry, and was confirmed by immunoprecipitation with in vitro transcription/translation (IVTT) products.ResultsAntibodies reactive against 624Mel proteins were detected in 4 of 12 (33%) patients (table 1). Mass spectrometric sequencing performed on proteins captured with sera from 3 of 4 patients identified several putative antigens. Immunoprecipitation with IVTT candidate proteins confirmed antibodies against melanoma-associated and cancer testis antigens NY-ESO-1, SSX2 and MAGEA10. Antibodies were observed in 1 of 1 (100%) patient with a complete response, 2 of 4 (50%) with a partial response, 1 of 1 (100%) with stable disease, and 0 of 6 (0%) with progressive disease. Antibody levels varied over the course of therapy, with previously undetectable specificities arising during treatment response in patients #1–3. Patient #1 with a complete tumor regression developed antibodies to SSX2 and MAGEA10 that were absent before treatment. Further, detection of these antibodies coincided with diagnosis of IRAEs (anti-SSX2 with pancreatitis and anti-MAGEA10 with dermatitis). In contrast, patient #3, initially with a partial tumor regression, demonstrated a loss of detectable anti-NY-ESO-1 antibodies upon disease progression, and subsequent metastasectomy demonstrated loss of NY-ESO-1 protein expression in the progressing tumor. Testing sera from all 12 patients with IVTT products for NY-ESO-1, SSX2 and MAGEA10 did not reveal additional humoral responses.Abstract 231 Table 1Antibodies detected in the serum or plasma of patients with metastatic melanoma treated with ICI therapy. Treatment response indicates best overall response according to RECIST v1.1. Post-treatment blood collections were drawn during or after ICI therapy.ConclusionsOur comprehensive screening platform detected circulating antibodies specific to multiple melanoma-associated and cancer testis antigens in patients deriving clinical benefit from ICI. Expanded investigations of the evolution of antibody production over the course of ICI therapy, associated with tumor response to treatment and development of IRAEs, are warranted.AcknowledgementsThis study was supported by the Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, and NIH P30-AR070254.Ethics ApprovalThis study was approved by the Johns Hopkins Institutional Review Board, approval #NA_00090257.


2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


2021 ◽  
Author(s):  
Luuk van Hooren ◽  
Alessandra Vaccaro ◽  
Mohanraj Ramachandran ◽  
Konstantinos Vazaios ◽  
Sylwia Libard ◽  
...  

AbstractGliomas are brain tumors characterized by immunosuppression. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors but are yet to be evaluated for glioma. Here, systemic delivery of αCD40 led to cytotoxic T cell dysfunction and impaired the response to immune checkpoint inhibitors in preclinical glioma models. This was associated with an accumulation of suppressive CD11b+ B cells. However, αCD40 also induced tertiary lymphoid structures (TLS). In human glioma, TLS correlated with increased T cell infiltration indicating enhanced immune responses. Our work unveils the pleiotropic effects of αCD40 therapy in glioma, which is of high clinical relevance.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A728-A728
Author(s):  
Shengqing Gu ◽  
Wubing Zhang ◽  
Xiaoqing Wang ◽  
Peng Jiang ◽  
Nicole Traugh ◽  
...  

BackgroundCancer immunotherapy, especially immune checkpoint blockade (ICB) therapy, is leading to a paradigm shift in cancer treatment, as a small percentage of cancer patients have obtained durable remission following ICB treatment. Successful ICB responses rely on cancer cells presenting antigens to the cell surface via the major histocompatibility complex (MHC), which activates antigen-specific T-lymphocytes to kill cancer cells. Type-I MHC (MHC-I) is wildly expressed in all cell types and mediates the interaction with cytotoxic CD8 T cells. However, over 65% of cancer patients are estimated to show defects in MHC-I-mediated antigen presentation, including downregulation of its expression that can lead to primary or acquired resistance to ICB therapy, and therapeutic strategies to effectively restore or boost MHC-I are limited.MethodsHere, we employed a CRISPR screening approach with dual-marker FACS sorting to identify factors that decouple the regulation of MHC-I and PD-L1. The experimentally validated target was used to generate a KO differential expression signature. Using this signature, we analyzed transcriptome data from drug perturbation studies to identify drugs that regulate MHC-I but not PD-L1. Finally, we validated the effect of the identified drug to enhance ICB response in a T-cell-dependent manner in vivo.ResultsCRISPR screens identified TRAF3, a suppressor of the NF-κB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout (Traf3-KO) gene expression signature is associated with better survival in ICB-naive cancer patients and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified SMAC mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T-cell-dependent killing, and adds to ICB efficacy. However, in cancer cells with high NF-κB activity, the effect of birinapant on MHC-I is weak, indicating context-dependent MHC-I regulation.ConclusionsIn summary, Traf3 deletion specifically upregulates MHC-I without inducing PD-L1 in response to various cytokines and sensitizes cancer cells to T-cell-driven cytotoxicity. The SMAC mimetic birinapant phenocopies Traf3-knockout and sensitizes MHC-I-low melanoma to ICB therapy. Further studies are needed to elucidate the context-dependencies of MHC-I regulation. Our findings provide preclinical rationale for treating some tumors expressing low MHC-I with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy.AcknowledgementsThis study was supported by grants from the NIH (R01CA234018 to XSL, R01AI137337 to BEG, P50CA101942-12 and P50CA206963 to GJF), Breast Cancer Research Foundation (BCRF-19-100 to XSL), Burroughs Wellcome Career Award in Medical Sciences (to BEG), and Sara Elizabeth O'Brien Trust Fellowship (to SG).We thank Drs. Kai Wucherpfennig and Deng Pan for their insightful suggestions on this study.Ethics ApprovalAll mice were housed in standard cage in Dana-Farber Cancer Institute Animal Resources Facility (ARF). All animal procedures were carried out under the ARF Institutional Animal Care and Use Committee (IACUC) protocol and were in accordance with the IACUC standards for the welfare of animals.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A625-A625
Author(s):  
Natalia Reszka-Blanco ◽  
Megan Krumpoch ◽  
Michaela Mentzer ◽  
Vinod Yadav Yadav ◽  
Brianna Bannister ◽  
...  

BackgroundIntegrin αvβ8 activates TGFβ in immune cells. αvβ8 inhibitors have been shown to potentiate immune checkpoint blockade (ICB) in preclinical models [1]. Radioimmunotherapy (RIT) induces immunogenic cell death and antigen presentation, however it concurrently activates immunosuppressive pathways. Interestingly, αvβ8 immunosuppressive activity was implicated in radiotherapy resistance [2]. We have explored whether antagonizing αvβ8 overcomes the suppressive effect of TGFβ and restores anti-tumor immunity in advanced ICB and RIT resistant tumors.MethodsEfficacy was evaluated after combination treatment with low dose radiation, αvβ8 (clone C6D4) and PD-1 (clone J43) mAb in an advanced CT26 colon cancer syngeneic mouse model. Mice were treated at tumor volume of >120 mm3 and euthanized at 2,000 mm3. Flow cytometry and transcriptomic analysis were used to assess the mechanism of action. Tumor volumes are presented as mean±SEM. Statistics were performed by one-way ANOVA, or log-rank test. Bone marrow derived dendritic cell (BMdDC) cultures were isolated from C57BL/6 mice.ResultsCell death, including radiation-induced apoptosis, induced immunoregulatory and maturation program in a population of ex vivo cultured BMdDC, recently described as mregDC/DC3 [3,4]. mregDC/DC3 signature was associated with increased αvβ8 expression, suggesting a role of this integrin in inducing an immunosuppressive phenotype.A CT26 model was established to mimic the progression of late-stage tumors and was unresponsive to radiation, ICB and RIT. In CT26 implanted mice, αvβ8 is expressed on tumor stoma, and is not detectable on cancer cells. Addition of αvβ8 mAb to RIT markedly increased tumor regression (P=0.0067) and survival (P<0.0001). There were 8/10 complete responders with addition of αvβ8 mAb relative to 3/10 in RIT alone. Improved efficacy correlated with enhanced T cell activation and improved DC functionality. Consistent with a recent report in a less advanced CT26 model [5], αvβ8 mAb + radiation resulted in similar efficacy as conventional RIT although the effect was modest in more advanced tumors (Figure 1, A, B).Abstract 595 Figure 1Complete response (CR) with improved survival when αvβ8 inhibition is added to RIT in CT26 syngeneic model of colorectal cancer in an advanced, ICB and RIT unresponsive stage. (A) Effect of combination therapy with low dose radiation (small animal radiation research platform (SARRP) at 5 Gray (Gy) on the day of staging (day 10)), PD-1 mAb (10 mg/kg twice weekly for 2 weeks) and αvβ8 mAb (7 mg/kg three times weekly for 3 weeks) measured by tumor burden. 5Gy+PD-1 and 5Gy+αvβ8 has a minimal effect on tumor growth inhibition showing slight improvement relative to radiation alone (5Gy+IgG). Addition of αvβ8 antagonism (5Gy+αvβ8+PD-1) improves anti-tumor responses leading to CR in 8 of 10 mice. (B) Kaplan-Meier Curve presenting time to progression. 5Gy+IgG improved survival over monotherapy with either αvβ8 or PD1 mAb. 5Gy+αvβ8+PD-1 resulted in a profound improvement of the survival over all other treatment conditionsConclusionsInhibition of αvβ8 in combination with RIT eradicated an advanced tumor, unresponsive to the respective monotherapies or conventional RIT. The anti-tumor effect was driven by enhancement of adaptive immunity, improvement of DC function and reduced tumor tolerance. These data provide evidence that αvβ8 inhibition enhances RIT and may be effective against ICB refractory tumors.ReferencesReszka-Blanco NJ,Yadav V, Krumpoch M, Cappellucci L, Cui D, Dowling JE, et al., Inhibition of integrin αvβ8 enhances immune checkpoint induced anti-tumor immunity by acting across immunologic synapse in syngeneic models of breast cancer. AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1559.Jin S, Lee WC, Aust D, Pilarsky C, Cordes N, β8 integrin mediates pancreatic cancer cell radiochemoresistance. Mol Cancer Res. 2019; 17(10): 2126–2138.Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, et al., A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 2020; 580 (7802): 257–262.Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, et al., Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018; 49(6): 1148–1161.Dodagatta-Marri E, Ma H-Y, Liang B, Li J, Meyer DS, Chen S-Y, et al., Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Report. 2021; 36(1): 109309Ethics ApprovalAll animal work was approved by the site Institutional Animal Care and Use Committee and was performed in conformance with the Guide for the Care and Use of Laboratory Animals within an AAALAC-accredited program. Humane euthanasia criteria were predetermined on the basis of body weight and defined clinical observations.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2762 ◽  
Author(s):  
Xinrui Zhao ◽  
Chunlin Shao

Radiotherapy (RT) is a conventional method for clinical treatment of local tumors, which can induce tumor-specific immune response and cause the shrinkage of primary tumor and distal metastases via mediating tumor infiltration of CD8+ T cells. Ionizing radiation (IR) induced tumor regression outside the radiation field is termed as abscopal effect. However, due to the mobilization of immunosuppressive signals by IR, the activated CD8+T cells are not sufficient to maintain a long-term positive feedback to make the tumors regress completely. Eventually, the “hot” tumors gradually turn to “cold”. With the advent of emerging immunotherapy, the combination of immune checkpoint blockade (ICB) and local RT has produced welcome changes in stubborn metastases, especially anti-PD-1/PD-L1 and anti-CTLA-4 which have been approved in clinical cancer treatment. However, the detailed mechanism of the abscopal effect induced by combined therapy is still unclear. Therefore, how to formulate a therapeutic schedule to maximize the efficacy should be took into consideration according to specific circumstance. This paper reviewed the recent research progresses in immunomodulatory effects of local radiotherapy on the tumor microenvironment, as well as the unique advantage for abscopal effect when combined with ICB, with a view to exploring the potential application value of radioimmunotherapy in clinic.


2019 ◽  
Vol 2 (2) ◽  
pp. 100-109 ◽  
Author(s):  
Manni Wang ◽  
Liu Yu ◽  
Xiawei Wei ◽  
Yuquan Wei

AbstractEarly studies shed light on the immune suppression of immune checkpoint molecules in the cancer microenvironment, with later studies applying immune checkpoint blockade (ICB) in treatment of various malignancies. Despite the encouraging efficacy of ICBs in a substantial subset of cancer patients, the treatment response varies. Gene mutations of both tumor cells and immune cells in the tumor microenvironment have recently been identified as potential predictors of the ICB response. Recent developments in gene expression profiling of tumors have allowed identification of a panel of mutated genes that may affect tumor cell response to ICB treatment. In this review, we discuss the association of the ICB response with gene expression and mutation profiles in tumor cells, which it is hoped will help to optimize the clinical application of ICBs in cancer patients.


Sign in / Sign up

Export Citation Format

Share Document