497 Longitudinal immune profiling reveals unique myeloid and T cell phenotypes associated with spontaneous immunoediting in a novel prostate tumor model

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A532-A532
Author(s):  
Casey Ager ◽  
Aleksander Obradovic ◽  
Juan Arriaga ◽  
Matthew Chaimowitz ◽  
Cory Abate-Shen ◽  
...  

BackgroundThe theory of cancer immunoediting, which describes the dynamic interactions between tumors and host immune cells that shape the character of each compartment, is foundational for understanding cancer immunotherapy. Few models exist that facilitate in-depth study of each of the three canonical phases of immunoediting: elimination, equilibrium, and escape. Here, we perform high dimensional longitudinal immune profiling of NPK-C1, a transplantable prostate tumor model that recapitulates the three phases of immunoediting spontaneously in immunocompetent C57BL/6 animals.MethodsWe generated a 28-color immune phenotyping panel to interrogate the NPK-C1 microenvironment using a Cytek Aurora spectral flow cytometer. We analyzed NPK-C1 tumors on days 10, 15, 20 and 24 post-implantation, representing elimination, equilibrium, early escape, and late escape phases, respectively. These data were analyzed by both traditional gating and with an optimized dimensionality reduction and unsupervised clustering workflow. We additionally performed in vivo depletion studies of T cell and granulocyte subsets at early and late time points to determine if these bulk populations are required for immunoediting during elimination and equilibrium/escape.ResultsWe found that a cluster of activated CD4 effector T cells were enriched early during elimination phase and were overrepresented in NPK-C1 tumors which regress rather than progress to escape. CD4 in vivo depletion studies validated a functional role for CD4 T cells in suppressing NPK-C1 progression at these phases. Additionally, a central memory-like cytotoxic CD8 T cell cluster was enriched in regressing NPK-C1 tumors, and CD8 depletion allowed NPK-C1 progression throughout immunoediting. Regulatory T cells (Tregs) as a whole were counterintuitively enriched in regressing tumors, however high dimensional analysis revealed their significant phenotypic diversity, with a number of Treg subpopulations enriched in progressing tumors. In the myeloid compartment, we found that iNOS+ DC-like cells were enriched in regressing tumors, while CD103+ DCs were counterintuitively associated with late stage tumor progression.ConclusionsThese data introduce a new model – NPK-C1 – to study immunoediting and suggest both CD8 and CD4 T cells are required to suppress tumor outgrowth throughout each phase of cancer immunoediting, while myeloid populations exhibit significant phenotypic and functional diversity throughout this process. Further, our identification of unique sub-populations of myeloid and T cells correlating with either regression or progression to escape highlights a role for multi-dimensional flow-based analyses to more deeply understand immune cell dynamics in the tumor microenvironment.Ethics ApprovalAll experiments and procedures for this study were approved by the Columbia University Medical Center Institutional Animal Care and Use Committee (IACUC)

2000 ◽  
Vol 191 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Zhengbin Lu ◽  
Lingxian Yuan ◽  
Xianzheng Zhou ◽  
Eduardo Sotomayor ◽  
Hyam I. Levitsky ◽  
...  

In many cases, induction of CD8+ CTL responses requires CD4+ T cell help. Recently, it has been shown that a dominant pathway of CD4+ help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4+ T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide–specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4+ T helper cells, respectively. We found that CD4+ T cells can provide potent help for DCs to activate CD8+ T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4+ help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4+–CD8+ T cell communication via lymphokines. Therefore, we conclude that CD4+ help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4+–CD8+ T cell communication.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A200-A200
Author(s):  
Yuki Muroyama ◽  
Yuki Muroyama ◽  
Sasikanth Manne ◽  
Alexandar Huang ◽  
Divij Mathew ◽  
...  

BackgroundAlthough immune checkpoint blockade revolutionized cancer therapy, response rates have been mixed in gynecological malignancies. While uterine endometrial cancer with high microsatellite instability (MSIHI) and high tumor mutational burden (TMB) respond robustly to checkpoint blockade, high-grade serous ovarian cancer (HGSOC) with low TMB respond modestly. Currently, there has been no known immune signature or T cell phenotype that predicts clinical response in gynecological tumors.MethodsTo dissect the immune landscape and T cell phenotypes in gynecological cancer patients receiving PD-1 blockade, we used high-dimensional cytometry (flow cytometry and mass cytometry (CyTOF)). We performed longitudinal deep immune profiling of PBMC from patients with recurrent uterine endometrial cancer receiving single-arm nivolumab, and HSGOC patients receiving neoadjuvant nivolumab plus platinum-based chemotherapy prior to debulking surgery.ResultsChemotherapy-resistant MSI-H uterine cancer patients treated with nivolumab had a proliferative T cell response 2–4 weeks post PD-1 blockade, consistent with responses seen in high TMB melanoma and lung cancer. The responding Ki67+ CD8 T cell population was largely CD45RAloCD27hi or CD45RAloCD27lo and highly expressed PD1, CTLA-4, and CD39, consistent with the phenotype of exhausted T cells (TEX). These exhausted-like cells are enriched in responders, whereas early expansion Tregs are enriched in non-responders. Unlike patients with uterine endometrial cancer, patients with TMBlo ovarian cancer did not have a clear proliferative CD8 T cell response after neoadjuvant nivolumab plus chemotherapy treatment, suggesting systemic immune suppression. At baseline, ovarian cancer without recurrence have more terminally differentiated effector-like CD8 T cells, and patients with recurrence have more naive-like cells. Thus, both high and low TMB gynecological tumors have distinct immune landscapes associated with clinical response. Additionally, in MSI-H uterine endometrial cancer patients, the length of time between the prior chemotherapy and the initiation of immunotherapy was negatively correlated with T cell reinvigoration post immunotherapy and clinical response. This suggests the importance of optimize therapeutic timing to maximize the therapeutic efficacy when combining immunotherapy and chemotherapy.ConclusionsCollectively, our immune profiling revealed the distinct immune signatures associated with clinical response to PD-1 blockade in gynecological cancers. Our results also suggest that TMBhi inflamed versus TMBlo cold tumor microenvironment, and timing of chemo/immunotherapy could impact differentiation and functions of T cells.Ethics ApprovalThe study was approved by MSKCC Ethics Board, approval number 17–180 and 17–182.


1990 ◽  
Vol 172 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
Y Kawabe ◽  
A Ochi

The cellular basis of the in vitro and in vivo T cell responses to Staphylococcus enterotoxin B (SEB) has been investigated. The proliferation and cytotoxicity of V beta 8.1,2+,CD4+ and CD8+ T cells were observed in in vitro response to SEB. In primary cytotoxicity assays, CD4+ T cells from control spleens were more active than their CD8+ counterparts, however, in cells derived from SEB-primed mice, CD8+ T cells were dominant in SEB-specific cytotoxicity. In vivo priming with SEB abrogated the response of V beta 8.1,2+,CD4+ T cells despite the fact that these cells exist in significant number. This SEB-specific anergy occurred only in V beta 8.1,2+,CD4+ T cells but not in CD8+ T cells. These findings indicate that the requirement for the induction of antigen-specific anergy is different between CD4+ and CD8+ T cells in post-thymic tolerance, and the existence of coanergic signals for the induction of T cell anergy is suggested.


1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


2007 ◽  
Vol 204 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Tim Worbs ◽  
Thorsten R. Mempel ◽  
Jasmin Bölter ◽  
Ulrich H. von Andrian ◽  
Reinhold Förster

In contrast to lymphocyte homing, little is known about molecular cues controlling the motility of lymphocytes within lymphoid organs. Applying intravital two-photon microscopy, we demonstrate that chemokine receptor CCR7 signaling enhances the intranodal motility of CD4+ T cells. Compared to wild-type (WT) cells, the average velocity and mean motility coefficient of adoptively transferred CCR7-deficient CD4+ T lymphocytes in T cell areas of WT recipients were reduced by 33 and 55%, respectively. Both parameters were comparably reduced for WT T lymphocytes migrating in T cell areas of plt/plt mice lacking CCR7 ligands. Importantly, systemic application of the CCR7 ligand CCL21 was sufficient to rescue the motility of WT T lymphocytes inside T cell areas of plt/plt recipients. Comparing the movement behavior of T cells in subcapsular areas that are devoid of detectable amounts of CCR7 ligands even in WT mice, we failed to reveal any differences between WT and plt/plt recipients. Furthermore, in both WT and plt/plt recipients, highly motile T cells rapidly accumulated in the subcapsular region after subcutaneous injection of the CCR7 ligand CCL19. Collectively, these data identify CCR7 and its ligands as important chemokinetic factors stimulating the basal motility of CD4+ T cells inside lymph nodes in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3110-3110
Author(s):  
Erwan R. Piriou ◽  
Christine Jansen ◽  
Karel van Dort ◽  
Iris De Cuyper ◽  
Nening M. Nanlohy ◽  
...  

Abstract Objective: EBV-specific CD8+ T cells have been extensively studied in various settings, and appear to play a major role in the control of EBV-related malignancies. In contrast, it is still unclear whether EBV-specific CD4+ T cells play a role in vivo. To study this question, an assay was developed to measure the CD4+ T-cell response towards two EBV antigens, in both healthy (n=14) and HIV-infected subjects (n=23). In addition, both HAART-treated (n=12) and untreated HIV+ individuals (n=14) - including progressors to EBV-related lymphoma - were studied longitudinally. Methods: EBV-specific CD4+ T cells were stimulated with peptide pools from latent protein EBNA1 and lytic protein BZLF1, and detected by measurement of IFNg-production. Results: After direct ex vivo stimulation, EBNA1 or BZLF1-specific IFNg- (and/or IL2) producing CD4+ T cell numbers were low, and measurable in less than half of the subjects studied (either HIV- and HIV+). Therefore, PBMC were cultured for 12 days in the presence of peptides and IL2 (from day 3), and then restimulated with peptides, allowing specific and reproducible expansion of EBV-specific CD4+ T cells, independent of HLA type and ex vivo antigen processing. Interestingly, numbers of EBV-specific CD4+ T cells inversely correlated with EBV viral load, implying an important role for EBV-specific CD4+ T cells in the control of EBV in vivo. Untreated HIV-infected individuals had a lower CD4+ T cell response to EBNA1 and BZLF1 as compared to healthy EBV carriers and HAART-treated HIV+ subjects. In longitudinal samples, EBNA1-specific, but not BZLF1-specific T-cell numbers increased after HAART, while EBV load was not affected by treatment. In all the progressors to EBV-related lymphoma, EBV-specific CD4+ T cells were lost at least 24 months before lymphoma diagnosis. Conclusions: Both cross-sectional and longitudinal data suggest an important role for EBV-specific CD4+ T cells in the control of EBV-related malignancies. Furthermore, it seems that HAART treatment leads to recovery of EBNA1-specific, but not BZLF1-specific CD4+ T-cell responses, implying changes in the latency pattern of EBV, despite an unaltered cell-associated EBV DNA load. Thus, early HAART treatment might prevent loss of specific CD4+ T-cell help and progression to NHL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1182-1182
Author(s):  
Eva M Wagner ◽  
Aline N Lay ◽  
Sina Wenzel ◽  
Timo Schmitt ◽  
Julia Hemmerling ◽  
...  

Abstract The human CD52 molecule is the target of the monoclonal antibody Alemtuzumab, which is used for treating patients with chemo-refractory chronic lymphocytic leukemia as well as for T cell depletion (TCD) in the context of allogeneic hematopoietic stem cell transplantation (HSCT). The molecule is expressed on the surface of lymphocytes, dendritic cells and to a lesser extent on blood-derived monocytes. Previously, investigators have demonstrated that the surface expression of CD52 on T cells is down-regulated after in vitro incubation with Alemtuzumab. By treating purified human CD4 T cells over 4 hours with 10 μg/mL Alemtuzumab in medium supplemented with 10% human AB serum in vitro, we observed a strong decrease of CD52 expression by flow cytometry with a maximum 3–7 days after incubation. The CD52 down-regulation was also found at weaker intensity on CD8 T cells. From previous studies in chronic lymphocytic leukemia patients, it is known that Alemtuzumab treatment also leads to a down-regulation of CD52 on T cells in vivo. However, similar experiments have not been performed in allogeneic HSCT patients receiving Alemtuzumab in vivo for T cell depletion. We therefore analyzed the expression of CD52 on human peripheral blood mononuclear cells isolated at repeated time points from 22 allogeneic HSCT patients after reduced-intensity conditioning with fludarabine and melphalan and in vivo T cell depletion with Alemtuzumab (100 mg). Half of the patients received prophylactic CD8-depleted donor lymphocyte infusions (DLI) to promote immune reconstitution. By flow cytometry, we observed that the CD52 expression on monocytes, B cells, and natural killer cells remained unaltered after transplantation and was not influenced by the application of DLI. In contrast, the majority of CD4 T cells were CD52-negative (median, 72%) after transplantation and they remained CD52-negative in patients who did not receive DLI throughout the first year after HSCT. The permanent lack of CD52 expression could not be explained by a continuous effect of Alemtuzumab, because earlier studies have shown that the antibody is not present in active plasma concentrations beyond day +60 after HSCT. In contrast, patients receiving CD8-depleted DLI demonstrated a significant increase in the proportion of CD52-positive CD4 T cells. In three of our patients (DLI: n=2, non-DLI: n=1) we analyzed the donor chimerism of CD52-positive and CD52-negative CD4 T cells sorted with high purity by flow cytometry. Three months after HSCT (before DLI), the proportion of donor T cells was clearly higher among the CD52-negative compared to the small proportion of CD52-positive cells in all patients (44% vs. 10%, 83% vs. 0%, and 100% vs. 40%). In the patient who did not receive DLI, the donor T cell chimerism remained mixed in the CD52-negative and CD52-positive fractions on days 200 (CD52-negative: 95%; CD52-positive: 15%) and 350 (CD52-negative: 92%; CD52-positive: 65%). In contrast, the two patients receiving CD8-depleted DLI showed a strong increase in the proportion of CD52-positive CD4 T cells that were of complete donor origin. Altogether, CD52 is permanently down-regulated in reconstituting CD4 T cells following HSCT with an Alemtuzumab-based TCD regimen unless DLI are applied. Our data support the idea of an active mechanism for CD52 down-regulation in CD4 T cells that is not related to B cells and natural killer cells and that appears to differently affect donor and host T cells, respectively.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 588-588
Author(s):  
Karrune Woan ◽  
Fengdong Cheng ◽  
Hongwei Wang ◽  
Jennifer Rock-Klotz ◽  
Zi Wang ◽  
...  

Abstract Abstract 588 We recently defined a novel role of histone deacetylase 11 (HDAC11), the newest member of the HDAC family, as a negative regulator of IL-10 gene transcription in antigen-presenting cells (APCs).1 To better understand the role of HDAC11 gene expression in immune cells in vivo, we have utilized a BAC (Bacterial artificial chromosome) transgenic mouse in which the EGFP reporter gene was inserted downstream of the HDAC11 promoter region but immediately upstream of the HDAC11 coding sequence (TgHDAC11-EGFP mice).2 In the steady-state, macrophages and B-cells isolated from spleen of TgHDAC11-EGFP mice express low levels of HDAC11 as evidenced by a slight shift in EGFP fluorescence from background. In sharp contrast, we identified a discrete population (11.9%) of T-cells over-expressing HDAC11 as demonstrated both by flow cytometry for EGFP and by qRT-PCR for HDAC11, a majority of which were CD4+ T-cells. Sorting of this EGFP+, CD4+ T-cell population confirmed that the increased EGFP expression correlated with an increased HDAC11mRNA expression. Reminiscent of our prior data in APCs, the increased expression of HDAC11 in T-cells was also inversely correlated with IL-10mRNA expression. Further analyses revealed that in the absence of any stimulation or T-cell polarizing conditions, this EGFP positive population expressed significantly elevated levels of ROR-γt and IL-17 mRNA, markers specific for the TH17 subpopulation. Polarization of wild type CD4+ T-cells into functional TH17 cells was associated with reduction of HDAC11 expression, suggesting a potential role for HDAC11 in regulating T-cell function and/or activation, in particular within the TH17 subset. Further support for this regulatory role of HDAC11 has been provided by our additional findings that T-cells devoid of HDAC11 are indeed hyper-reactive in vitro and in in vivo models. 1. Villagra A, et al. Nat Immunol. 2009 Jan;10(1):92-100. 2. Gong S, et al. Nature. 2003 Oct 30;425(6961):917-25. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 568-568
Author(s):  
Krystalyn E. Hudson ◽  
James C. Zimring

Introduction: Loss of humoral tolerance to red blood cell (RBC) antigens may lead to the generation of pathogenic autoantibodies and result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. Failure of tolerance to RBC antigens occurs with considerable frequency (1-3 cases/1,000 adults) and prevalence of AIHA is as high as 30% in persons with compromised B and/or T cell tolerance mechanisms. However, RBC-specific tolerance mechanisms are poorly understood. To elucidate the immune tolerances to RBC autoantigens, we utilized HOD mice. The HOD mouse expresses an RBC-specific transgene consisting of hen egg lysozyme (HEL), ovalbumin (OVA), and Duffy. Using the HOD model, we previously demonstrated B cell tolerance to RBC-specific HOD antigen is incomplete; however, T cell tolerance is stringent. HOD mice have similar detectable frequencies of HOD-specific CD4+ T cells compared to B6 mice. Although present, autoreactive HOD-specific CD4+ T cells are non-functional. Circumventing T cell tolerance by adoptive transfer, HOD mice make high titer anti-HOD autoantibodies in vivo. Thus, despite the presence of autoreactive B cells, no HOD-reactive antibodies are detectable unless CD4+ T cells are given, indicating T cell tolerance is a stopgap to autoimmunity. Methods: Leukocytes from C57BL/6 (B6) and HOD mice were harvested and OVA-specific CD4+ T cell responses were assessed by tetramer-pulldown assays with pooled tetramers I-Ab-OVA 329-337/326-334. Isolated cells were stained for surface and intracellular markers and analyzed via flow cytometry. For in vivo analysis, mice were treated with 300ug anti-CD25 (clone PC-61) depleting antibody or isotype control; a subset of antibody-treated mice was immunized with OVA/CFA. Antibodies bound to HOD RBCs were determined by direct antibody test. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Results: Tetramer pull-down assays revealed similar numbers of OVA-reactive CD4+ T cells from HOD and B6 mice (mean 56 and 40, respectively, p = 0.3). However, cell surface and intracellular marker staining demonstrated that HOD mice had higher numbers of OVA-tetramer reactive CD4+ T cells that express regulatory markers CD25 and FoxP3, and exhaustion marker PD1 as compared to control B6 mice. Inhibitory CTLA4 expression was not detectable on OVA-reactive CD4+ T cells from HOD or B6 mice. To test whether regulatory T cells were required for RBC-specific immune tolerance, HOD and B6 mice were treated with CD25 depleting antibody or isotype control antibody. Anti-CD25 antibody treated mice had a significant reduction of CD25+ cells 4 days post treatment (p < 0.001, 2 independent experiments). Similarly, there was a significant reduction in FoxP3+CD25+CD4+ T cells (Tregs) in anti-CD25 treated mice (p < 0.001), compared to isotype. Mice received weekly injections of anti-CD25 or isotype antibody to maintain depletion for one month. A subset of mice received an OVA/CFA immunization. Sustained CD25+ depletion did not result in anti-HOD autoantibody generation. Further, there was no change in the endogenous frequency of OVA-reactive CD4+ T cells between HOD and B6 mice, regardless of antibody treatment. Similarly, HOD mice treated with depletion (or isotype) antibody and immunized with OVA/CFA did not make detectable anti-HOD autoantibodies. Consistent with lack of detectable autoantibodies, no expansion of OVA-tetramer reactive CD4+ T cells was observed in HOD mice. In contrast, B6 mice (treated with anti-CD25 or isotype antibody) had a detectable expansion of OVA-specific CD4+ T cells as a result of immunization. Conclusions: The data demonstrate a phenotypic difference between the OVA-reactive CD4+ T cells from HOD and B6 mice, with an increase in number of Tregs detectable in HOD mice. Administration of anti-CD25 antibody significantly reduced the number of overall CD25+ cells and Tregs. Prolonged depletion of these cellular subsets did not elicit autoantibodies in HOD mice. Further, immunization of CD25 depleted mice with a strong immune stimulus (OVA/CFA, known to expand OVA-reactive T cells in B6 mice), did not induce anti-HOD autoantibodies nor did it expand OVA-specific autoreactive CD4+ T cells in HOD mice. Together, these data demonstrate that CD25+ cells are not required for the maintenance of RBC-specific T cell tolerance and suggest a role for other regulatory mechanisms. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document