scholarly journals 234 Distinct efficacy and immunological responses to αPD-1, αPD-L1 and αPD-L2 immunotherapy in aged versus young hosts

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A249-A250
Author(s):  
Yilun Deng ◽  
Harshita Gupta ◽  
Myrna Garcia ◽  
Aravind Kancharla ◽  
Ryan Reyes ◽  
...  

BackgroundAging is the biggest risk factor for cancer, yet there are limited pre-clinical/clinical data regarding aging effects on immune checkpoint (IC) inhibition (ICI) outcomes. αPD-1 can potentially block PD-L1 and PD-L2 while αPD-L1 can block PD-1 and CD80. Melanoma response to αPD-1/αPD-L1 correlates with CD8+TCF-1+ T cell stem cell (TCSC) generation.1 Lack of host IL-17 can lead to increased IFN-γ production.2 3MethodsWe tested αPD-1 (200 μg/mouse), αPD-L1 (100 μg/mouse) or αPD-L2 (200 μg/mouse) in aged (18–33 months) and young (3–8 months) mice challenged orthotopically with B16 (WT or PD-L1ko) or TPN61R melanoma (NRAS mutation melanoma model)4 (αPD-L2 only) (SQ). Tumors were analyzed by flow. We tested αPD-L2 (20 μg/ml) effects by co-culturing young or aged T cells ± young or aged myeloid cells.ResultsWe reported that αPD-1 treats young and aged with B16 whereas αPD-L1 treats young not aged.5 αPD-L2 treated B16 and TPN61R melanoma in aged but, remarkably, not young, the first single agent anti-cancer immunotherapy exhibiting this property (figure 1). B16 tumors from aged had differential IC content (PD-1, PD-L1, CD80, PD-L2) versus tumors from young (e.g., more PD-L2+ tumor and stroma cells in aged mice; figure 2). Efficacy in young (αPD-1, αPD-L1) and aged (αPD-L2) correlated with increased tumor TCSC content (figure 3). αPD-L2 efficacy against B16 in aged mice required host IFN-γ and IL-17 (figure 4). αPD-1 efficacy against B16 in aged appeared to be host and tumor PD-L1 independent (figure 5). PD-L1KO B16 response to αPD-1 in aged also correlated with increased tumor TCSC content. Myeloid cell PD-L2 signaling inhibited aged but not young CD8+ T cell IL-2 production in vitro (figure 6).Abstract 234 Figure 1Abstract 234 Figure 2Abstract 234 Figure 3Abstract 234 Figure 4Abstract 234 Figure 5Abstract 234 Figure 6ConclusionsTreatment differences in aged versus young could depend on IC, TCSC and/or host cytokine differences (IL-17/IFN-γ). αPD-1 efficacy in aged PD-L1KO mice challenged with PD-L1KO B16 suggests that PD-L2 block is sufficient for αPD-1 efficacy in aged. PD-L2 expression differences in the tumor microenvironment could also contribute to treatment efficacy differences. PD-L2 inhibitory signaling on aged but not young CD8+ T cells is a likely mechanism for αPD-L2 efficacy in aged but not young. We are now testing the role of IL-17 in αPD-L2 efficacy as it could be upstream of IFN-γ effects, and TCSC effects in aged versus young. Our work can improve cancer immunotherapy in aged hosts and provides insights into treatment failure, including in young hosts.AcknowledgementsSouth Texas MSTP training grant (NIH T32GM113896), TL1TR002647, NIH T32AI138944, R01 CA231325, Waxman Grant, UL1 TR001120ReferencesMiller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 2019;20(3):326–336.Moroda M, Takamoto M, Iwakura Y, Nakayama J, Aosai F. Interleukin-17A-deficient mice are highly susceptible to toxoplasma gondii infection due to excessively induced T. gondii HSP70 and interferon gamma production. Infection and immunity 2017;85(12):e00399–00317.Yi T, Zhao D, Lin C-L, Zhang C, Chen Y, Todorov I, LeBon T, Kandeel F, Forman S, Zeng D. Absence of donor Th17 leads to augmented Th1 differentiation and exacerbated acute graft-versus-host disease. Blood, The Journal of the American Society of Hematology 2008;112(5):2101–2110.Burd CE, Liu W, Huynh MV, Waqas MA, Gillahan JE, Clark KS, Fu K, Martin BL, Jeck WR, Souroullas GP. Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer discovery 2014;4(12):1418–1429.Padron A, Hurez V, Gupta HB, Clark CA, Pandeswara SL, Yuan B, Svatek RS, Turk MJ, Drerup JM, Li R, et al. Age effects of distinct immune checkpoint blockade treatments in a mouse melanoma model. Exp Gerontol 2018;105:146–154.Ethics ApprovalAll animal studies are approved by UTHSA IACUC.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A548-A548
Author(s):  
Paolo Vignali ◽  
Kristin DePeaux ◽  
McLane Watson ◽  
Ashley Menk ◽  
Nicole Scharping ◽  
...  

BackgroundBlockade of co-inhibitory ‘checkpoint’ molecules, PD-1 and CTLA-4, has induced impressive clinical responses in advanced tumors; yet only in a subset of patients.1–3 Limited success with checkpoint blockade therapy suggests other cell extrinsic or intrinsic mechanisms may be dampening an effective immune response. Cytotoxic CD8+ T cells (CTL) encountering chronic antigen and metabolic restriction can differentiate to a terminally exhausted state (Texh), marked by hyporesponsiveness and metabolic, epigenetic, and transcriptional dysfunction.4–8 While enrichment of this population in tumor is a negative prognostic factor,9–10 it remains unclear whether Texh are simply non-functional or instead possess tolerogenic or suppressive properties. Transcriptional profiling of tumor-infiltrating PD-1int (progenitor exhausted) CTL versus PD-1hiTIM-3+ (terminally exhausted; Texh), reveals that exhausted cells express a pattern of genes associated with immune suppression. We hypothesize that Texh potentiate the suppressive microenvironment of solid tumor by autoregulation and inhibition of local immune responses.MethodsT cell populations were isolated from murine melanoma–B16-F10 or a lab-generated melanoma clone of the spontaneous BREF/PTEN model–by expression of inhibitory receptors and assayed in tandem in microsuppression assays. Murine melanoma clones with inhibited oxidative metabolism were generated by CRISPR-Cas9 deletion and validated for ablated mitochondrial respiration by extracellular flux analysis. Enforced expression of CD39 in effector T cells was attained by murine retroviral vector delivery.ResultsWhen sorted directly from tumor, PD-1hiTim3+ Texh, but not progenitor exhausted PD-1int CTL, induce marked suppression of T cell effector responses, comparable to Foxp3+ Treg from the same environment. Expression of the ectonucleotidase, CD39, is uniquely expressed in Texh and increases as T cells differentiate towards exhaustion. Genetic deletion of CD39 in Texh eliminates the regulatory phenotype of tumor-infiltrating Texh and enforced CD39 expression on effector T cells can inhibit T cell receptor signaling and downstream function. CD39 expression correlates with exposure to hypoxia and Texh sorted from tumors engineered to be less hypoxic displayed a significant loss of suppressive capacity. Our data suggest that tumor hypoxia enforces Hif1a-dependent expression of CD39 which depletes extracellular ATP, contributes to generation of immunosuppressive adenosine, and has been previously associated with terminal exhaustion.11–13ConclusionsOur data support a model that as CTL progress to terminal exhaustion, hypoxic exposure enforces the upregulation of CD39, providing Texh a mechanism to suppress proinflammatory processes. These findings suggest Texh are not solely dysfunctional but rather are deleterious to anti-tumor immunity and may need to be drastically reprogrammed or deleted in order to alleviate immunosuppressive functions.ReferencesWolchok JD. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med 2017; 377, 1345–1356.Hellmann MD, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 2017; 18, 31–41.Robert C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 2015; 372, 2521–2532.Miller BC, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Im SJ, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 2016;537:417–421.Blackburn SD, Shin H, Freeman GJ & Wherry EJ. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc. Natl. Acad. Sci 2008;105:15016–15021.Pauken KE, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016;354:1160–1165.Najjar YG, et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight. 2019; 4.Loo K, et al. Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy. JCI Insight 2017; 2.Daud AI, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest 2016;126:3447–3452.. Duhen T, et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun 2018;9:2724.Canale FP, et al. CD39 Expression defines cell exhaustion in tumor-infiltrating CD8+ T Cells. Cancer Res 2018;78:115–128.Gupta PK, et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog 2015;11, e1005177.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A248-A248
Author(s):  
Anupallavi Srinivasamani ◽  
Michael Curran ◽  
Qinying Liu ◽  
Shwetha Hegde ◽  
Chao-Hsien Chen ◽  
...  

BackgroundPD-1/PD-L1 blockade is responsible for the majority of the success of cancer immunotherapy.1 However, only 14% of patients eligible to receive checkpoint blockade achieve objected clinical responses.2 3 The reason for the failure of PD-L1 blockade may be attributed to the recently appreciated widespread expression of PD-L2 across human cancers and its immunosuppresive stromal cells.4 PD-L2 expression was shown to be as or more predictive of response to PD-1 blockade than PD-L14. PD-L2 traditionally was dismissed as functionally redundant to PD-L1 varying only in pattern of expression. We hypothesize that PD-L2 engages PD-1 to generate a distinct inhibitory signal from that of PD-L1, and antibody mediated blockade and depletion of PD-L2+ cells may promote anti-tumor immunity that is superior to PD-L1 blockade alone.MethodsCell based bioluminescent assay demonstrated the nature of regulation mediated by human PD-L2 through the PD-1 co-receptor. RNA-sequencing identified key differences in the signaling pathways generated in Jurkat T cells by PD-1 binding to PD-L1 or PD-L2. Multidimensional flow cytometry determined the differential effects of PD-L1 and PD-L2 on human T cell proliferation and effector function. Western blot elucidated the temporal kinetics of inhibition mediated by PD-L1 and PD-L2. Survival studies in murine syngeneic lymphoma model evaluated the efficacy of antibody mediated blockade and depletion of PD-L2+ cells.ResultsWe validated that human PD-L2, unlike murine PD-L2, generates a purely co-inhibitory signal in human T cells, albeit with a reduced inhibitory potential relative to PD-L1. We discovered significant differences in downstream T cell signaling pathways generated by PD-L1 versus PD-L2 through PD-1 engagement. Human PD-L1 and PD-L2 differentially modulated T cell effector function and proliferation with PD-L2 preferentially arresting T cells in S-phase of cell cycle. PD-L1 and PD-L2 also differed in the temporal kinetics of dephosphorylation of the membrane proximal proteins in the TCR-CD3 signaling complex. We observed that combination blockade of PD-L1 and PD-L2 improves on blockade of PD-L1 alone resulting in increased production of IL-2 and IFNγ in primary human mixed lymphocyte reactions. Our data in a syngeneic murine model of EL4 showed that effector-function capable PD-L2 blocking antibodies are therapeutically superior to PD-L1 or PD-L2 blockade alone.ConclusionsWe are the first to report on T cell immunoregulatory functions of PD-L2 which are distinct from those of PD-L1, and demonstrate that the more tumor-selective expression pattern of PD-L2 relative to PD-L1 provides a therapeutic advantage to effector-function capable PD-L2 antibodies.AcknowledgementsAS was supported by the CPRIT Research Training Grant(RP170067)ReferencesRibas A, Wolchok JD (2018). Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355.Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, Zhang C, Lunceford JK, Joe A, Cheng J, Webber AL, Ibrahim N, Plimack ER, Ott PA, Seiwert TY, Ribas A, McClanahan TK, Tomassini JE, Loboda A, Kaufman D (2018). Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362.Haslam A, Prasad V (2019). Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2:e192535.Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY, Handa M, Tomassini JE, McClanahan T (2017). PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 23:3158–3167.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 917-917 ◽  
Author(s):  
Sarah Gothberg ◽  
Kanutte Huse ◽  
Arne Kolstad ◽  
Ole Christian Lingjærde ◽  
Bjørn Østenstad ◽  
...  

Abstract Background: Follicular lymphoma (FL) is the most common subtype of indolent non Hodgkin's lymphoma (NHL). Median survival is long (>10 years), but current chemo-immunotherapy regimens used for FL are usually not curative. While T cells in the FL tumor microenvironment are considered dysfunctional and associated with disease progression, a better understanding of T-cell signaling may reveal how to productively engage tumor-infiltrating T cells to kill lymphoma B cells. Our previous study showed that expression of the immune checkpoint receptor PD-1 was directly correlated with reduced cytokine signaling in FL T cells (Myklebust et al., Blood 2013). Antibody immunotherapy targeting the PD-1/PD-L1 pathway has shown significant activity in solid tumors, but these benefits have not been as profound in NHLs, including FL. Co-blockade of checkpoint inhibitors may therefore be necessary to generate optimal anti-tumor responses in FL. The hypothesis underlying this study was that characterizing signaling responses in FL tumor-infiltrating T cells will identify new targets for combination of checkpoint blockade. Methods: Surface expression of 9 checkpoint receptors governing T cell function was measured in subsets of CD4 and CD8 T cells from FL lymph node tumors (n = 14) and from healthy donor tonsils (n= 11) and peripheral blood samples (n = 7) using fluorescence flow cytometry. Patterns of checkpoint receptor expression were compared with 1) intracellular phospho-protein signaling response and 2) cytokine production for subsets of T cells infiltrating FL tumors and the corresponding T-cell populations in healthy tonsils. Phospho-specific flow cytometry measured phosphorylation of STATs and T cell receptor (TCR) signaling effectors within minutes following stimulation by IL-4, IL-7, IL-21, or α-CD3+α-CD28 (TCR stimulation) antibodies. Results: CD4 and CD8 T cells infiltrating FL tumors were gated into subsets defined by PD-1 and ICOS protein expression, and compared to cognate T cell subsets in healthy tonsils. FL and tonsil T cells closely matched in their signaling responses to IL-4, IL-7, and IL-21 stimulation, with PD-1 expressing cells (CD4+PD-1hiICOS+ (TFH) and CD8+PD-1int T cells) exhibiting modest phospho-protein signaling responses compared to T cells not expressing PD-1. Furthermore, TCR membrane proximal signaling events (p-CD3ζ, p-SLP76) following TCR stimulation were comparable in FL and tonsil T cells. This contrasted reduced phospho-ERK signaling in all CD4 and CD8 T cell subsets infiltrating FL tumors which distinguished them from tonsillar T cells. IFN-γ production also differed between FL and tonsils, as CD8 T cells infiltrating FL tumors produced less IFN-γ. Reduced IFN-γ production was independent of PD-1 expression, suggesting suppressed function in these T cells which could be due to inhibitory receptors other than PD-1. Of the 9 checkpoint receptors measured, PD-1 and T cell Ig and ITIM domain (TIGIT) were expressed at the highest frequency. In FL, TIGIT was expressed in 58% and 80% of CD8 effector and effector memory cells, respectively, as compared to 43% and 68% of the cognate healthy tonsillar subsets. TIGIT was also frequently expressed in CD4 FL T cells, as 52% and 79% of effector and effector memory cells expressed TIGIT, respectively, as compared to 16% and 59% of the corresponding subsets from healthy tonsils. viSNE analysis demonstrated that TIGIT and PD-1 were frequently co-expressed in FL T cells, and a large fraction of PD-1int T cells had high expression of TIGIT (Figure 1). These results provide a rationale for co-blockade of PD-1 and TIGIT in FL and for investigation of how co-blockade impacts T cell functions. Conclusions: These results reveal specific suppression of cytokine signaling in CD8 effector T cells infiltrating FL tumors and identify TIGIT and PD-1 as strong candidates for co-checkpoint blockade in FL. A deeper understanding of the interplay between checkpoint receptors and key T cell cytokine signaling events in FL will further assist in engineering immuno-therapeutic regiments that improve FL patient clinical outcomes. Disclosures Kolstad: Nordic Nanovector: Other: Membership of Scientific Advisory Board. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Irish:Incyte: Research Funding; Janssen: Research Funding; Cytobank, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 116 (45) ◽  
pp. 22699-22709 ◽  
Author(s):  
Spencer C. Wei ◽  
Nana-Ama A. S. Anang ◽  
Roshan Sharma ◽  
Miles C. Andrews ◽  
Alexandre Reuben ◽  
...  

Immune checkpoint blockade therapy targets T cell-negative costimulatory molecules such as cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1). Combination anti–CTLA-4 and anti–PD-1 blockade therapy has enhanced efficacy, but it remains unclear through what mechanisms such effects are mediated. A critical question is whether combination therapy targets and modulates the same T cell populations as monotherapies. Using a mass cytometry-based systems approach, we comprehensively profiled the response of T cell populations to monotherapy and combination anti–CTLA-4 plus anti–PD-1 therapy in syngeneic murine tumors and clinical samples. Most effects of monotherapies were additive in the context of combination therapy; however, multiple combination therapy-specific effects were observed. Highly phenotypically exhausted cluster of differentiation 8 (CD8) T cells expand in frequency following anti–PD-1 monotherapy but not combination therapy, while activated terminally differentiated effector CD8 T cells expand only following combination therapy. Combination therapy also led to further increased frequency of T helper type 1 (Th1)-like CD4 effector T cells even though anti–PD-1 monotherapy is not sufficient to do so. Mass cytometry analyses of peripheral blood from melanoma patients treated with immune checkpoint blockade therapies similarly revealed mostly additive effects on the frequencies of T cell subsets along with unique modulation of terminally differentiated effector CD8 T cells by combination ipilimumab plus nivolumab therapy. Together, these findings indicate that dual blockade of CTLA-4 and PD-1 therapy is sufficient to induce unique cellular responses compared with either monotherapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A264-A264
Author(s):  
Shanshan Qi ◽  
Hongjuan Zhang ◽  
Ruilin Sun ◽  
Annie An ◽  
Henry Li ◽  
...  

BackgroundToll-like receptors (TLRs) serve critical roles in mediating innate immune responses against many pathogens. However, they may also bind to endogenous ligands and lead to the pathogenesis of autoimmunity. Although TLR8 belongs to the same TLR family as TLR7, its role in inflammation and tumor progression is not yet fully understood due to the lack of suitable animal models. In humans, both TLR7 and TLR8 recognize single-stranded self-RNA, viral RNA, and synthetic small molecule agonists.1, 2 However, mouse Tlr8 is non-functional due to the absence of 5 amino acids necessary for RNA recognition. In order to create a mouse model with functional TLR8, we replaced exon 3 of mouse Tlr8 with human TLR8, therefore developing a hTLR8 knock-in (KI) model. Both heterozygous and homozygous hTLR8 KI mice are viable with inflammatory phenotypes, i.e. enlarged spleens and livers, and significantly higher IL-12 p40 levels under TLR8 agonist treatment. In this study, we evaluated the potential use of hTLR8 mice for cancer immunotherapy studies.MethodshTLR8 mice, together with naïve C57BL/6 mice, were inoculated with MC38 syngeneic tumor cells. Tumor bearing mice were grouped at a mean tumor volume of approximately 100 mm3 for treatment with PBS or 10 mg/kg anti-PD-1 (RMP1-14) antibody. At the efficacy endpoint, spleens and tumors were collected for flow cytometry profiling.ResultsAnti-PD-1 treatment of MC38 tumors in naïve C57BL/6 led to moderate tumor growth inhibition (TGI = 54%). Interestingly, anti-PD-1 treatment showed improved efficacy in hTLR8 mice (TGI = 79%), including 2/10 tumors with complete tumor regression. In comparison, non-treated MC38 tumor growth rate was slower in hTLR8 mice than in naïve mice. Anti-PD-1 treated hTLR8 mice also had significantly increased IFN-γ and TNF-a positive CD4+ T cells in the spleen, along with higher numbers of differentiated effector T cells. In addition, hTLR8 mice have activated dendritic cells and macrophages, acting as critical steps in initiation of the inflammatory process, with higher levels of pro-inflammatory cytokines, such as IL-6, IFN-γ, TNF-a, and IL-1β, which may promote Th1 priming and differentiation of T cells into IFN-γ or TNF-a producing cells.ConclusionshTLR8 mice offer a great tool to model cancer immunotherapy in an inflammatory/autoimmunity prone background. Moreover, hTLR8 mice can be effectively used to shift a ‘cold’ tumor phenotype to ‘hot’ tumors in a syngeneic setting.Ethics ApprovalAnimal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).ReferencesKugelberg E. Making mice more human the TLR8 way. Nat Rev Immunol 2014;14:6.Guiducci C, Gong M, Cepika A-M, et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 2013;210:2903–2919.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2006 ◽  
Vol 75 (3) ◽  
pp. 1154-1166 ◽  
Author(s):  
Laura H. Hogan ◽  
Dominic O. Co ◽  
Jozsef Karman ◽  
Erika Heninger ◽  
M. Suresh ◽  
...  

ABSTRACT The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of gamma interferon (IFN-γ)-producing LCMV-specific T cells in liver granulomas and increased local IFN-γ. Despite traffic of activated T cells that resulted in a CD8 T-cell-dominated granuloma, the BCG liver organ load was unaltered from control levels. In OT-1 T-cell-receptor (TCR) transgenic mice, ovalbumin (OVA) immunization or LCMV coinfection of BCG-infected mice induced CD8 T-cell-dominated granulomas containing large numbers of non-BCG-specific activated T cells. The higher baseline BCG organ load in this CD8 TCR transgenic animal allowed us to demonstrate that OVA immunization and LCMV coinfection increased anti-BCG protection. The bacterial load remained substantially higher than in mice with a more complete TCR repertoire. Overall, the present study suggests that peripherally activated CD8 T cells can be recruited to chronic inflammatory sites, but their contribution to protective immunity is limited to conditions of underlying immunodeficiency.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A161-A161
Author(s):  
Diana DeLucia ◽  
Tiffany Pariva ◽  
Roland Strong ◽  
Owen Witte ◽  
John Lee

BackgroundIn advanced prostate cancer (PCa), progression to castration-resistant PCa (CRPC) is inevitable and novel therapies for CRPC are needed. Adoptive transfer of T cells targeting tumor antigens is a promising approach in the cancer field. Unfortunately, identifying antigens expressed exclusively in prostate tumor cells has been challenging. Since the prostate is not an essential organ, we alternatively selected prostate-restricted epithelial antigens (PREAs) expressed in both malignant and normal prostate tissue for transgenic T cell studies.MethodsRNA-seq data sets identifying genes enriched in PCa were cross-referenced with the NIH Genotype-Expression database to identify PREAs. Using a novel molecular immunology approach, select PREAs and major histocompatibility complex class I (MHC-I) molecules were co-expressed in HEK293F cells, from which MHC–peptide complexes were efficiently isolated. Peptides were eluted and sequenced by mass spectrometry. Peptide–MHC binding was validated with a T2 stabilization assay and peptide immunodominance was determined using an interferon-γ (IFN-γ) ELISpot assay following stimulation of healthy HLA-A2+ peripheral blood mononuclear cells (PBMC) with peptide pools. Following peptide stimulation, CD8+ T cells with peptide-specific T cell receptors (TCR) were enriched by peptide–MHC-I dextramer labeling and fluorescence activated cell sorting for single cell TCR α/β chain sequencing.ResultsWe identified 11 A2+ peptides (8 previously unpublished) from prostatic acid phosphatase (ACPP), solute carrier family 45 member 3 (SLC45A3), and NK3 homeobox 1 (NKX3.1) that bound to HLA-A2 with varying affinities. Extended culture stimulation of PBMC with peptide pools from each PREA, compared to the standard overnight culture, revealed a greater number of IFN-γ producing cells overall and a greater breadth of response across all the peptides. Antigen specific CD8+ T cells were detectable at low frequencies in both male and female healthy PBMC for 7 of the 11 peptides. Dextramer-sorted antigen-specific cells were used for single-cell paired TCR αβ sequencing and transgenic T cell development.ConclusionsThrough this work we identified HLA-A2-presented antigenic peptides from the PREAs ACPP, SLC45A3, and NKX3.1 that can induce the expansion of IFN-γ producing CD8+ T cells. Through peptide–MHC-I dextramer labeling, we isolated PREA-specific CD8+ T cells and characterized TCR αβ sequences with potential anti-tumor functionality. Our results highlight a rapid and directed platform for the development of MHC-I-restricted transgenic CD8+ T cells targeting lineage-specific proteins expressed in prostate epithelia for adoptive therapy of advanced PCa.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A705-A705
Author(s):  
Shuyang Qin ◽  
Booyeon Han ◽  
Alexander Chacon ◽  
Alexa Melucci ◽  
Alyssa Williams ◽  
...  

BackgroundDespite recent advancements in systemic therapy, only a minority of metastatic patients develop meaningful clinical responses to immune checkpoint inhibitors. Inherent genetic instability of melanoma generates genomically and microenvironmentally distinct metastases. These different tumor microenvironments (TMEs) contain numerous T cell suppression mechanisms, such as upregulation of the PD-1/PD-L1 exhaustion pathway. However, as synchronous metastases share one host immune system, intertumoral heterogeneity may result in increasing cross-talk between metastases that impairs systemic antitumor immunity and promotes PD-1 immunotherapy resistance.MethodsYUMM 1.7 (less immunogenic) and YUMMER 1.7 (more immunogenic cell line derived from YUMM following UVB irradiation) melanoma cell lines were simultaneously injected into opposite flanks of the same mice as a model of synchronous melanoma. We assessed tumor growth in wildtype, interferon-gamma (IFN-γ) knockout, and CD8-depleted mice as well as in response to PD-1 inhibitor. We characterized the TME with flow cytometry and performed TCR sequencing on tumor-infiltrating CD8 T cells.ResultsDistinct TMEs were observed for YUMM and YUMMER tumors simultaneously grown in the same mouse. The presence of the less immunogenic YUMM tumor allows the more immunogenic YUMMER tumors to escape IFN-γ and CD8 T cell-mediated rejection, despite abundant tumor-infiltrating, clonally expanded CD8 T cells. Identical immunodominant CD8 T cell clones were found in both YUMM and YUMMER tumors within the same mouse. Synchronous YUMMER-infiltrating CD8 T cells exhibit suppressed phenotypes, including increased persistence of surface PD-1 and decreased surface CD107a expressions. Simultaneously, these synchronous YUMMER tumors additionally upregulate macrophage surface PD-L1 expression, which potentially contributes to tumor immune escape. Lastly, synchronous YUMMER tumors become resistant to PD-1 inhibition, in direct contrast to control YUMMER tumors.ConclusionsIn a host with multiple melanoma lesions, immunogenicity of all tumors contribute to the systemic antitumor immune response. We show that two synchronous tumors with synonymous mutations (<40%), as is the case with metastatic patients, lead to skewed CD8 T cell expansion of the same clones in both tumors. The presence of a less immunogenic tumor prevents CD8 and IFN-γ mediated rejection of the more immunogenic tumor. Furthermore, CD8 T cells in the more immunogenic tumor exhibit decreased effector function and increased resistance to PD-1 blockade, as tumor-infiltrating macrophages concurrently become more immunosuppressive. These results are highly suggestive of a “reverse abscopal effect,” by which immunologically “cold” tumors generate systemic immunosuppression that facilitate PD-1 immunotherapy resistance and immune escape of all other tumors in synchronous metastatic melanoma patients.AcknowledgementsWe would like to thank Dr. Marcus Bosenberg from the Department of Dermatology at Yale University for kindly gifting us with the YUMMER 1.7 murine melanoma cell line.Ethics ApprovalAnimal experiments were approved by the University Committee on Animal Resources and performed in accordance with University of Rochester approved guidelines.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A788-A788
Author(s):  
Xiuning Le ◽  
Minghao Dang ◽  
Venkatesh Hegde ◽  
Bo Jiang ◽  
Ravaen Slay ◽  
...  

BackgroundHuman papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HPV+ HNSCC) is a disease that has moderate response to anti-PD-1/L1 immune checkpoint blockade, with the response rates less than 20% and median progression-free survival less than 3 months. A greater understanding of tumor intrinsic and extrinsic factors that restrict anti-tumor immunity in the tumor immune microenvironment (TIME) is needed to identify other immune checkpoints to enhance therapeutic efficacy.MethodsTwo cohorts (TCGA n=72 and a separate cohort n=84) of surgically resected, treatment-naïve HPV+ HNSCC with RNA-seq were analyzed to understand the immune features. In addition, single-cell RNA-seq and TCR-seq were performed on 18 cases to further delineate the immune molecules' interactions. An immune-competent murine HPV+ HNSCC model was used to preliminarily evaluate the therapeutic efficacy.ResultsIn two bulk-sequenced HPV+ HNSCC cohorts, TIGIT ligands PVR and NECTIN2 were found to associate with an epithelial-to-mesenchymal gene expression signature, suppression of IFNα and IFNγ signaling, a stromal-enriched or immune-excluded TIME, and poor survival. Single-cell RNA-seq of over 72,000 cells of HPV+ HNSCC revealed that the PVR/NECTIN ligand TIGIT was highly prevalent in T-cells (34%), significantly higher than PD1- (20%, p<0.01). There is an enrichment of cell-cell interactions mediated by TIGIT-PVR/NECTIN2 in the TIME of HPV+HNSCC versus normal tonsil. TIGIT was the most differentially upregulated immune checkpoint on clonally expanded CD8+T-cells and was abundant on antigen-experienced, tissue-resident memory CD8+T-cell and T-regulatory subsets. TIGIT ligands PVR, NECTIN1, and NECTIN2 were abundant on mature regulatory dendritic cells (DCs), immunosuppressive plasmacytoid (p)DCs, and macrophages, respectively. TIGIT and PD-1 co-blockade in the mEER syngeneic murine model significantly reduced tumor growth, improved survival, restored effector function of HPV16E7-specific CD8+T cells, natural killer cells, and DCs, and conferred tumor re-challenge protection.ConclusionsTIGIT-PVR/NECTIN receptors/ligands are more abundant than PD-1/L1 in the TIME of HPV+ HNSCC. Co-blockade of TIGIT and PD-1 immune checkpoints enhanced anti-tumor efficacy in a CD8+ T-cell-dependent manner and conferred long-term immune protection in a murine model. Our study nominates TIGIT as a therapeutic target for HPV+ HNSCC.


Sign in / Sign up

Export Citation Format

Share Document