scholarly journals 603 Targeted STAT3 degradation leads to remodeling of an immunosuppressive tumor microenvironment and subsequent sensitization to immune checkpoint therapy

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A633-A633
Author(s):  
Joyoti Dey ◽  
Phillip Liu ◽  
Michele Mayo ◽  
Rahul Karnik ◽  
Bin Yang ◽  
...  

BackgroundSignal Transducer and Activator of Transcription 3 (STAT3), a multifaceted transcription factor, is aberrantly activated across a variety of malignancies; however, its selective targeting has to-date remained a therapeutic challenge. STAT3 plays a pivotal role in shaping the tumor immune landscape through cancer cell-intrinsic mechanisms, direct regulation of immune cell function and via cancer cell- tumor microenvironment (TME) crosstalk, that collectively result in an immunosuppressive TME. Targeted protein degradation represents a novel therapeutic modality enabling direct targeting of previously undruggable oncoproteins. We have developed potent and selective STAT3 heterobifunctional degraders demonstrating activity across diverse tumor and immune cell types.MethodsWe investigated the immunomodulatory impact of STAT3 degradation on tumorigenesis in syngeneic mouse models representing cancers with heterogeneous immune milieus. Methods included in vivo pharmacological approaches, immunophenotyping and gene expression profiling.ResultsTreatment of CT-26 (colorectal cancer) and A20 (B-cell lymphoma) tumor-bearing mice with a STAT3 degrader resulted in significant tumor growth inhibition compared to controls, with loss of STAT3 protein in both tumor cells and TME. This was accompanied by a decrease in M2 polarized macrophages and concomitant increases in M1 polarized macrophages and tumor infiltrating lymphocytes. The anti-tumor responses were abrogated by antibody mediated CD8+ T cell depletion or by using immunodeficient host-strains implicating the observed efficacy to be predominantly driven by immune-directed mechanisms. Gene expression profiling of STAT3 degrader-treated CT-26 tumors showed marked increases in proinflammatory genes including T cell and M1 macrophage activation markers, compared to controls. Notably, induction of an Ifnγ-responsive gene signature (Ifnγ, Stat1, Cxcl9, Cxcl10, Ido1) suggested that STAT3 degradation results in a T-cell inflamed phenotype associated with responsiveness to immune checkpoint therapy (ICT). Furthermore, on-treatment tumors showed an upregulation of genes such as Pdl1, Ctla4, Lag3 which reflect T cell activation as well as counterregulatory mechanisms. Therefore, we evaluated STAT3 degradation in combination with anti-PD1 in these models which are poorly responsive to anti-PD1 monotherapy. Robust synergy was observed in the CT-26 model with 60% complete responses and development of immunological memory as confirmed by tumor re-challenge studies. Studies are underway to ascertain the applicability of this combination therapy in different tumor-immune contextures and indications, and to elucidate the mechanistic basis of synergy.ConclusionsSTAT3 degradation remodels an immunosuppressed TME activating anti-tumor immunity as monotherapy and effectively combines with anti-PD1. These data provide a rationale for selectively degrading STAT3 as a strategy to sensitize cancers with relevant immune contextures to ICT in the clinic.

2020 ◽  
Vol 4 (11) ◽  
pp. 2523-2535
Author(s):  
Clémentine Sarkozy ◽  
Lauren Chong ◽  
Katsuyoshi Takata ◽  
Elizabeth A. Chavez ◽  
Tomoko Miyata-Takata ◽  
...  

Abstract Gray zone lymphoma (GZL), a B-cell lymphoma with features intermediate between large B-cell lymphoma (LBCL) and classic Hodgkin lymphoma (cHL), is a rare and poorly defined entity. Alongside GZL, a subset of Epstein-Barr virus (EBV)–positive diffuse large B-cell lymphoma (DLBCL) has been described with polymorphic/GZL-like morphology (polymorphic-EBV-L). To fill the important gap in our understanding of the pathogenic process underlying these entities, we performed a gene expression study of a large international cohort of GZL and polymorphic-EBV-L, combined with cHL and primary mediastinal large B-cell lymphoma (PMBCL) cases. In an unsupervised principal component analysis, GZL cases presented with intermediate scores in a spectrum between cHL and PMBCL, whereas polymorphic-EBV-L clustered distinctly. The main biological pathways underlying the GZL spectrum were related to cell cycle, reflecting tumor cell content, and extracellular matrix signatures related to the cellular tumor microenvironment. Differential expression analysis and phenotypic characterization of the tumor microenvironment highlighted the predominance of regulatory macrophages in GZL compared with cHL and PMBCL. Two distinct subtypes of GZL were distinguishable that were phenotypically reminiscent of PMBCL and DLBCL, and we observed an association of PMBCL-type GZL with clinical presentation in the “thymic” anatomic niche. In summary, gene expression profiling (GEP) enabled us to add precision to the GZL spectrum, describe the biological distinction compared with polymorphic-EBV-L, and distinguish cases with and without thymic involvement as 2 subgroups of GZL, namely PMBCL-like and DLBCL-like GZL.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10030-10030
Author(s):  
Jennifer Seelisch ◽  
Matthew Zatzman ◽  
Federico Comitani ◽  
Fabio Fuligni ◽  
Ledia Brunga ◽  
...  

10030 Background: Infant acute lymphoblastic leukemia (ALL) is the only subtype of childhood ALL whose outcome has not improved over the past two decades. The most important prognosticator is the presence of rearrangements in the Mixed Lineage Leukemia gene (MLL-r), however, many patients present with high-risk clinical features but without MLL-r. We recently identified two cases of infant ALL with high-risk clinical features resembling MLL-r, but were negative for MLL-r by conventional diagnostics. RNA sequencing revealed a partial tandem duplication in MLL (MLL-PTD). We thus aimed to determine if MLL-PTD, other MLL abnormalities, or other genetic or transcriptomic features were driving this subset of high-risk infant ALL without MLL-r. Methods: We obtained 19 banked patient samples from the Children’s Oncology Group (COG) infant ALL trial (AALL0631) from MLL wildtype patients as determined by FISH and cytogenetics. Utilizing deep RNA-sequencing, we manually inspected the MLL gene for MLL-PTD, while also performing automated fusion detection and gene expression profiling in search of defining features of these tumors. Results: 3 additional MLL-PTDs were identified, all in patients with infant T-cell ALL, whereas both index cases were in patients with infant B-cell ALL. Gene expression profiling analysis revealed that all five MLL-PTD infants clustered together. Eight infants (7 with B-cell ALL) were found to have Ph-like expression. Five of these 8 infants were also found to have an IKZF1/JAK2 expression profile; one of these five had a PAX5-JAK2 fusion detected. Two infants (including the one noted above) had novel PAX5 fusions, known drivers of B-cell leukemia. Additional detected fusions included TCF3-PBX1 and TCF4-ZNF384. Conclusions: MLL-PTDs were found in both B- and T-cell infant ALL. Though Ph-like ALL has been described in adolescents and young adults, we found a substantial frequency of Ph-like expression among MLL-WT infants. Further characterization of these infants is ongoing. If replicated in other infant cohorts, these two findings may help explain the poor prognosis of MLL-WT ALL when compared to children with standard risk ALL, and offer the possibility of targeted therapy for select infants.


2006 ◽  
Vol 130 (4) ◽  
pp. 483-520 ◽  
Author(s):  
Cherie H. Dunphy

Abstract Context.—Gene expression (GE) analyses using microarrays have become an important part of biomedical and clinical research in hematolymphoid malignancies. However, the methods are time-consuming and costly for routine clinical practice. Objectives.—To review the literature regarding GE data that may provide important information regarding pathogenesis and that may be extrapolated for use in diagnosing and prognosticating lymphomas and leukemias; to present GE findings in Hodgkin and non-Hodgkin lymphomas, acute leukemias, and chronic myeloid leukemia in detail; and to summarize the practical clinical applications in tables that are referenced throughout the text. Data Source.—PubMed was searched for pertinent literature from 1993 to 2005. Conclusions.—Gene expression profiling of lymphomas and leukemias aids in the diagnosis and prognostication of these diseases. The extrapolation of these findings to more timely, efficient, and cost-effective methods, such as flow cytometry and immunohistochemistry, results in better diagnostic tools to manage the diseases. Flow cytometric and immunohistochemical applications of the information gained from GE profiling assist in the management of chronic lymphocytic leukemia, other low-grade B-cell non-Hodgkin lymphomas and leukemias, diffuse large B-cell lymphoma, nodular lymphocyte–predominant Hodgkin lymphoma, and classic Hodgkin lymphoma. For practical clinical use, GE profiling of precursor B acute lymphoblastic leukemia, precursor T acute lymphoblastic leukemia, and acute myeloid leukemia has supported most of the information that has been obtained by cytogenetic and molecular studies (except for the identification of FLT3 mutations for molecular analysis), but extrapolation of the analyses leaves much to be gained based on the GE profiling data.


Author(s):  
David W. Scott

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma worldwide and consists of a heterogeneous group of cancers classified together on the basis of shared morphology, immunophenotype, and aggressive clinical behavior. It is now recognized that this malignancy comprises at least two distinct molecular subtypes identified by gene expression profiling: the activated B-cell-like (ABC) and the germinal center B-cell-like (GCB) groups—the cell-of-origin (COO) classification. These two groups have different genetic mutation landscapes, pathobiology, and outcomes following treatment. Evidence is accumulating that novel agents have selective activity in one or the other COO group, making COO a predictive biomarker. Thus, there is now a pressing need for accurate and robust methods to assign COO, to support clinical trials, and ultimately guide treatment decisions for patients. The “gold standard” methods for COO are based on gene expression profiling (GEP) of RNA from fresh frozen tissue using microarray technology, which is an impractical solution when formalin-fixed paraffin-embedded tissue (FFPET) biopsies are the standard diagnostic material. This review outlines the history of the COO classification before examining the practical implementation of COO assays applicable to FFPET biopsies. The immunohistochemistry (IHC)-based algorithms and gene expression–based assays suitable for the highly degraded RNA from FFPET are discussed. Finally, the technical and practical challenges that still need to be addressed are outlined before robust gene expression–based assays are used in the routine management of patients with DLBCL.


2009 ◽  
Vol 69 (5) ◽  
pp. 437-446 ◽  
Author(s):  
D. Brudzewsky ◽  
A. E. Pedersen ◽  
M. H. Claesson ◽  
M. Gad ◽  
N. N. Kristensen ◽  
...  

2013 ◽  
Vol 56 (4) ◽  
pp. 530 ◽  
Author(s):  
Yan Zheng ◽  
Yuanyuan Zha ◽  
Robbert M. Spaapen ◽  
Rebecca Mathew ◽  
Kenneth Barr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document