scholarly journals Genetic burden linked to founder effects in Saguenay-Lac-Saint-Jean illustrates the importance of genetic screening test availability

2021 ◽  
pp. jmedgenet-2021-107809
Author(s):  
Mbarka Bchetnia ◽  
Luigi Bouchard ◽  
Jean Mathieu ◽  
Philippe Campeau ◽  
Charles Morin ◽  
...  

The Saguenay–Lac-Saint-Jean (SLSJ) region located in the province of Quebec was settled in the 19th century by pioneers issued from successive migration waves starting in France in the 17th century and continuing within Quebec until the beginning of the 20th century. The genetic structure of the SLSJ population is considered to be the product a triple founder effect and is characterised by a higher prevalence of some rare genetic diseases. Several studies were performed to elucidate the historical, demographic and genetic background of current SLSJ inhabitants to assess the origins of these rare disorders and their distribution in the population. Thanks to the development of new sequencing technologies, the genes and the variants responsible for the most prevalent conditions were identified. Combined with other resources such as the BALSAC population database, identifying the causal genes and the pathogenic variants allowed to assess the impacts of some of these founder mutations on the population health and to design precision medicine public health strategies based on carrier testing. Furthermore, it stimulated the establishment of many public programmes.We report here a review and an update of a subset of inherited disorders and founder mutations in the SLSJ region. Data were collected from published scientific sources. This work expands the knowledge about the current frequencies of these rare disorders, the frequencies of other rare genetic diseases in this population, the relevance of the carrier tests offered to the population, as well as the current available treatments and research about future therapeutic avenues for these inherited disorders.

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 76 ◽  
Author(s):  
Julia Romanowska ◽  
Anagha Joshi

Advances in sequencing technologies have enabled the exploration of the genetic basis for several clinical disorders by allowing identification of causal mutations in rare genetic diseases. Sequencing technology has also facilitated genome-wide association studies to gather single nucleotide polymorphisms in common diseases including cancer and diabetes. Sequencing has therefore become common in the clinic for both prognostics and diagnostics. The success in follow-up steps, i.e., mapping mutations to causal genes and therapeutic targets to further the development of novel therapies, has nevertheless been very limited. This is because most mutations associated with diseases lie in inter-genic regions including the so-called regulatory genome. Additionally, no genetic causes are apparent for many diseases including neurodegenerative disorders. A complementary approach is therefore gaining interest, namely to focus on epigenetic control of the disease to generate more complete functional genomic maps. To this end, several recent studies have generated large-scale epigenetic datasets in a disease context to form a link between genotype and phenotype. We focus DNA methylation and important histone marks, where recent advances have been made thanks to technology improvements, cost effectiveness, and large meta-scale epigenome consortia efforts. We summarize recent studies unravelling the mechanistic understanding of epigenetic processes in disease development and progression. Moreover, we show how methodology advancements enable causal relationships to be established, and we pinpoint the most important issues to be addressed by future research.


Author(s):  
J Francis Borgio

More than 25 million DNA variations were discovered as novel including major alleles from Arab population. Exome studies on Arabs discovered >3000 novel nucleotide variants associated with >1200 rare genetic disorders. Reclassification of many pathogenic variant into benign through the Arab database enhance building a detailed and comprehensive map of Arab morbid genome. Intellectual disability stands first with the combined and observed carrier frequency. Genome studies and advanced computational biology discovered interesting novel candidate disease marker variations in many genes from consanguineous families with intellectual disability, neurogenetic disorders, blood and bleeding disorder and rare genetic diseases. Pathogenic variants in C12orf57 gene are prominently associated with the etiology of developmental delay/intellectual impairment. Arab mitogenome exposed hundreds of variations in mtDNA genome and its association with obesity. Further study is needed in genomics to fully comprehend the molecular abnormalities and associated pathogenesis that cause inherited disorders in Arab ancestries.


2020 ◽  
Author(s):  
Phillip A. Richmond ◽  
Tamar V. Av-Shalom ◽  
Oriol Fornes ◽  
Bhavi Modi ◽  
Alison M. Elliott ◽  
...  

AbstractMendelian rare genetic diseases affect 5-10% of the population, and with over 5,300 genes responsible for ~7,000 different diseases, they are challenging to diagnose. The use of whole genome sequencing (WGS) has bolstered the diagnosis rate significantly. Effective use of WGS relies upon the ability to identify the disrupted gene responsible for disease phenotypes. This process involves genomic variant calling and prioritization, and is the beneficiary of improvements to sequencing technology, variant calling approaches, and increased capacity to prioritize genomic variants with potential pathogenicity. As analysis pipelines continue to improve, careful testing of their efficacy is paramount. However, real-life cases typically emerge anecdotally, and utilization of clinically sensitive and identifiable data for testing pipeline improvements is regulated and limiting. We identified the need for a gene-based variant simulation framework which can create mock rare disease scenarios, utilizing known pathogenic variants or through the creation of novel gene-disrupting variants. To fill this need, we present GeneBreaker, a tool which creates synthetic rare disease cases with utility for benchmarking variant calling approaches, testing the efficacy of variant prioritization, and as an educational mechanism for training diagnostic practitioners in the expanding field of genomic medicine. GeneBreaker is freely available at http://GeneBreaker.cmmt.ubc.ca.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hosneara Akter ◽  
Mohammad Shahnoor Hossain ◽  
Nushrat Jahan Dity ◽  
Md. Atikur Rahaman ◽  
K. M. Furkan Uddin ◽  
...  

AbstractCollectively, rare genetic diseases affect a significant number of individuals worldwide. In this study, we have conducted whole-exome sequencing (WES) and identified underlying pathogenic or likely pathogenic variants in five children with rare genetic diseases. We present evidence for disease-causing autosomal recessive variants in a range of disease-associated genes such as DHH-associated 46,XY gonadal dysgenesis (GD) or 46,XY sex reversal 7, GNPTAB-associated mucolipidosis II alpha/beta (ML II), BBS1-associated Bardet–Biedl Syndrome (BBS), SURF1-associated Leigh Syndrome (LS) and AP4B1-associated spastic paraplegia-47 (SPG47) in unrelated affected members from Bangladesh. Our analysis pipeline detected three homozygous mutations, including a novel c. 863 G > C (p.Pro288Arg) variant in DHH, and two compound heterozygous variants, including two novel variants: c.2972dupT (p.Met991Ilefs*) in GNPTAB and c.229 G > C (p.Gly77Arg) in SURF1. All mutations were validated by Sanger sequencing. Collectively, this study adds to the genetic heterogeneity of rare genetic diseases and is the first report elucidating the genetic profile of (consanguineous and nonconsanguineous) rare genetic diseases in the Bangladesh population.


2019 ◽  
Vol 56 (12) ◽  
pp. 783-791 ◽  
Author(s):  
David Bick ◽  
Marilyn Jones ◽  
Stacie L Taylor ◽  
Ryan J Taft ◽  
John Belmont

Up to 350 million people worldwide suffer from a rare disease, and while the individual diseases are rare, in aggregate they represent a substantial challenge to global health systems. The majority of rare disorders are genetic in origin, with children under the age of five disproportionately affected. As these conditions are difficult to identify clinically, genetic and genomic testing have become the backbone of diagnostic testing in this population. In the last 10 years, next-generation sequencing technologies have enabled testing of multiple disease genes simultaneously, ranging from targeted gene panels to exome sequencing (ES) and genome sequencing (GS). GS is quickly becoming a practical first-tier test, as cost decreases and performance improves. A growing number of studies demonstrate that GS can detect an unparalleled range of pathogenic abnormalities in a single laboratory workflow. GS has the potential to deliver unbiased, rapid and accurate molecular diagnoses to patients across diverse clinical indications and complex presentations. In this paper, we discuss clinical indications for testing and historical testing paradigms. Evidence supporting GS as a diagnostic tool is supported by superior genomic coverage, types of pathogenic variants detected, simpler laboratory workflow enabling shorter turnaround times, diagnostic and reanalysis yield, and impact on healthcare.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Francesca Becherucci ◽  
Viviana Palazzo ◽  
Luigi Cirillo ◽  
Benedetta Mazzinghi ◽  
Samuela Landini ◽  
...  

Abstract Background and Aims Bartter (BS) and Gitelman syndrome (GS) are autosomal recessive rare inherited disorders characterized by hypokalemic metabolic alkalosis and secondary hyperaldosteronism. The primary defect is a genetically determined impairment of sodium chloride reabsorption in the renal tubule, thus resulting in salt loss, dehydration and acid-base homeostasis perturbations. Although the diagnosis can be suspected based on presenting features, the clinical diagnosis of BS and GS can be challenging, as they are rare and phenotypically overlapping. As a consequence, the current clinical classification lacks of specificity and genetic testing represents the gold standard for the diagnosis. Driven by the rapidly decreasing costs and turn-around time, next-generation sequencing technologies are increasingly utilized in diagnostics and research of inherited tubulopathies, including BS and GS. Recently, sequencing of selected gene panels provided the advantage of achieving high coverage of genes of interest at lower costs, providing high diagnostic yield and new insights into the phenotypic spectrum of these rare disorders. However, whole-exome (WES) is not routinely performed for the molecular diagnosis of BS and GS. The aim of our study was to assess the diagnostic performance of WES in BS and GS and to establish genotype-phenotype correlations. Method We performed WES in all consecutive patients referred for genetic testing with a clinical suspect of BS or GS. Variant prioritization was carried out according to the American College of Medical Genetics and Genomics guidelines (ACMG). Parents and first-degree relatives were included, whenever available. Demographic, clinical and laboratory data were collected retrospectively, in order to establish genotype-phenotype correlations. Results We enrolled 50 patients (22 males, 46 Caucasians) with a clinical diagnosis of BS (19), GS (24) or BS/GS (7). All the patients showed hypokalemic metabolic alkalosis at onset (serum bicarbonate=29.5 mEq/l ± 4.4, potassium= 2.7 mEq/l ± 0.6). The median age at clinical diagnosis was 7 years (range 0-67 years). Three patients had familial history of tubulopathies. WES showed pathogenic variants in 42/50 patients (84%), thus establishing a conclusive diagnosis. Interestingly, a dedicated analytic pipeline allowed us to identify copy number variations (CNVs) in 7/42 patients with a confirmed genetic diagnosis. In detail, WES allowed us to confirm the clinical diagnosis in 33/50 patients, with an improvement in classification in at least 14 cases (i.e. subtype I-V of BS). In 9 additional patients, genetic testing changed the clinical diagnosis: 6 patients with a clinical of BS turned out to have pathogenic variants in SLC12A3, resulting in GS; in 3 patients, genetic testing revised the clinical diagnosis indicating inherited disorders outside the BS/GS spectrum (HELIX syndrome, Primary familial hypoparatiroidism, Type 2 renal hypomagnesemia). Only 38% of patients with a genetic diagnosis of BS showed nephrocalcinosis. Strikingly, this was present in 8% of patients with GS. On the other hand, hypomagnesemia, a distinctive feature of GS, was similarly distributed among BS and GS patients (45% vs. 68%, respectively). Finally, although patients with GS showed a median age at onset higher than patients with BS, some overlap did exist, making differential diagnosis challenging at single-patient level. Conclusion The results of our study demonstrate that WES ensures a high diagnostic yield (84%) in patients with a clinical diagnosis of BS or GS, especially if coupled with analysis of CNVs. This approach showed to be useful in dealing with the phenotypic heterogeneity typical of these rare disorders, improving differential diagnosis by detecting phenocopies also outside the BS/GS spectrum, enabling additional specific work-up, genetic counseling, and screening of at-risk relatives.


Author(s):  
Michał Nowicki ◽  
Stanisława Bazan-Socha ◽  
Mariusz Kłopotowski ◽  
Beata Błażejewska-Hyżorek ◽  
Mariusz Kusztal ◽  
...  

Current therapy for Anderson–Fabry disease in Poland includes hospital or clinic-based intravenous enzyme replacement therapy with recombinant agalsidase alpha or beta, or oral pharmacological chaperone therapy with migalastat. Some countries around the world offer such treatment to patients in the comfort of their own homes. The 2020–2021 COVID-19 pandemic has pushed global healthcare providers to evolve their services so as to minimize the risk of COVID-19 exposure to both patients and providers; this has led to advances in telemedicine services and the increasing availability of at-home treatment for various procedures including parenteral drug administration. A total of 80% of surveyed Anderson–Fabry disease patients in Poland would prefer home-based treatment, which would be a safe and convenient alternative to clinic-based treatment if patient selection is based on our proposed algorithm. Our recommendations for home-based treatments appear feasible for the long term care of Anderson–Fabry disease patients during the COVID-19 pandemic and beyond. This may also serve as a basis for home-based treatment programs in other rare and ultra-rare genetic diseases.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 820
Author(s):  
Lorena Kumarasinghe ◽  
Lu Xiong ◽  
Maria Adelaida Garcia-Gimeno ◽  
Elisa Lazzari ◽  
Pascual Sanz ◽  
...  

Tripartite motif (TRIM) proteins are RING E3 ubiquitin ligases defined by a shared domain structure. Several of them are implicated in rare genetic diseases, and mutations in TRIM32 and TRIM-like malin are associated with Limb-Girdle Muscular Dystrophy R8 and Lafora disease, respectively. These two proteins are evolutionary related, share a common ancestor, and both display NHL repeats at their C-terminus. Here, we revmniew the function of these two related E3 ubiquitin ligases discussing their intrinsic and possible common pathophysiological pathways.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 601
Author(s):  
Kyung-Sun Park

In this study, two different approaches were applied in the analysis of the GAA gene. One was analyzed based on patients with Pompe disease, and the other was analyzed based on GAA genomic data from unaffected carriers in a general population genetic database. For this, GAA variants in Korean and Japanese patients reported in previous studies and in patients reported in the Pompe disease GAA variant database were analyzed as a model. In addition, GAA variants in the Korean Reference Genome Database (KRGDB), the Japanese Multi Omics Reference Panel (jMorp), and the Genome Aggregation Database (gnomAD) were analyzed. Overall, approximately 50% of the pathogenic or likely pathogenic variants (PLPVs) found in unaffected carriers were also found in real patients with Pompe disease (Koreans, 57.1%; Japanese, 46.2%). In addition, there was a moderate positive correlation (Spearman’s correlation coefficient of 0.45–0.69) between the proportion of certain PLPVs in patients and the minor allele frequency of their variants in a general population database. Based on the analysis of general population databases, the total carrier frequency for Pompe disease in Koreans and Japanese was estimated to be 1.7% and 0.7%, respectively, and the predicted genetic prevalence was 1:13,657 and 1:78,013, respectively.


2012 ◽  
Vol 3 (5) ◽  
pp. 197-203 ◽  
Author(s):  
P. Makrythanasis ◽  
S.E. Antonarakis

Sign in / Sign up

Export Citation Format

Share Document