scholarly journals External validation of the QCovid risk prediction algorithm for risk of COVID-19 hospitalisation and mortality in adults: national validation cohort study in Scotland

Thorax ◽  
2021 ◽  
pp. thoraxjnl-2021-217580
Author(s):  
Colin R Simpson ◽  
Chris Robertson ◽  
Steven Kerr ◽  
Ting Shi ◽  
Eleftheria Vasileiou ◽  
...  

BackgroundThe QCovid algorithm is a risk prediction tool that can be used to stratify individuals by risk of COVID-19 hospitalisation and mortality. Version 1 of the algorithm was trained using data covering 10.5 million patients in England in the period 24 January 2020 to 30 April 2020. We carried out an external validation of version 1 of the QCovid algorithm in Scotland.MethodsWe established a national COVID-19 data platform using individual level data for the population of Scotland (5.4 million residents). Primary care data were linked to reverse-transcription PCR (RT-PCR) virology testing, hospitalisation and mortality data. We assessed the performance of the QCovid algorithm in predicting COVID-19 hospitalisations and deaths in our dataset for two time periods matching the original study: 1 March 2020 to 30 April 2020, and 1 May 2020 to 30 June 2020.ResultsOur dataset comprised 5 384 819 individuals, representing 99% of the estimated population (5 463 300) resident in Scotland in 2020. The algorithm showed good calibration in the first period, but systematic overestimation of risk in the second period, prior to temporal recalibration. Harrell’s C for deaths in females and males in the first period was 0.95 (95% CI 0.94 to 0.95) and 0.93 (95% CI 0.92 to 0.93), respectively. Harrell’s C for hospitalisations in females and males in the first period was 0.81 (95% CI 0.80 to 0.82) and 0.82 (95% CI 0.81 to 0.82), respectively.ConclusionsVersion 1 of the QCovid algorithm showed high levels of discrimination in predicting the risk of COVID-19 hospitalisations and deaths in adults resident in Scotland for the original two time periods studied, but is likely to need ongoing recalibration prospectively.

2021 ◽  
Author(s):  
Vahe Nafilyan ◽  
Ben Humberstone ◽  
Nisha Mehta ◽  
Ian Diamond ◽  
Carol Coupland ◽  
...  

SUMMARYBackgroundTo externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England.MethodsPopulation-based cohort study using the ONS Public Health Linked Data Asset, a cohort based on the 2011 Census linked to Hospital Episode Statistics, the General Practice Extraction Service Data for pandemic planning and research, radiotherapy and systemic chemotherapy records. The primary outcome was time to COVID-19 death, defined as confirmed or suspected COVID-19 death as per death certification. Two time periods were used: (a) 24th January to 30th April 2020; and (b) 1st May to 28th July 2020. We evaluated the performance of the QCovid algorithms using measures of discrimination and calibration for each validation time period.FindingsThe study comprises 34,897,648 adults aged 19-100 years resident in England. There were 26,985 COVID-19 deaths during the first time-period and 13,177 during the second. The algorithms had good calibration in the validation cohort in both time periods with close correspondence of observed and predicted risks. They explained 77.1% (95% CI: 76.9% to 77.4%) of the variation in time to death in men in the first time-period (R2); the D statistic was 3.76 (95% CI: 3.73 to 3.79); Harrell’s C was 0.935 (0.933 to 0.937). Similar results were obtained for women, and in the second time-period. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths in the first time period was 65.9% for men and 71.7% for women. People in the top 20% of predicted risks of death accounted for 90.8% of all COVID-19 deaths for men and 93.0% for women.InterpretationThe QCovid population-based risk algorithm performed well, showing very high levels of discrimination for COVID-19 deaths in men and women for both time periods. It has the potential to be dynamically updated as the pandemic evolves and therefore, has potential use in guiding national policy.FundingNational Institute of Health ResearchRESEARCH IN CONTEXTEvidence before this studyPublic policy measures and clinical risk assessment relevant to COVID-19 need to be aided by rigorously developed and validated risk prediction models. A recent living systematic review of published risk prediction models for COVID-19 found most models are subject to a high risk of bias with optimistic reported performance, raising concern that these models may be unreliable when applied in practice. A population-based risk prediction model, QCovid risk prediction algorithm, has recently been developed to identify adults at high risk of serious COVID-19 outcomes, which overcome many of the limitations of previous tools.Added value of this studyCommissioned by the Chief Medical Officer for England, we validated the novel clinical risk prediction model (QCovid) to identify risks of short-term severe outcomes due to COVID-19. We used national linked datasets from general practice, death registry and hospital episode data for a population-representative sample of over 34 million adults. The risk models have excellent discrimination in men and women (Harrell’s C statistic>0.9) and are well calibrated. QCovid represents a new, evidence-based opportunity for population risk-stratification.Implications of all the available evidenceQCovid has the potential to support public health policy, from enabling shared decision making between clinicians and patients in relation to health and work risks, to targeted recruitment for clinical trials, and prioritisation of vaccination, for example.


BMJ ◽  
2020 ◽  
pp. m3731 ◽  
Author(s):  
Ash K Clift ◽  
Carol A C Coupland ◽  
Ruth H Keogh ◽  
Karla Diaz-Ordaz ◽  
Elizabeth Williamson ◽  
...  

Abstract Objective To derive and validate a risk prediction algorithm to estimate hospital admission and mortality outcomes from coronavirus disease 2019 (covid-19) in adults. Design Population based cohort study. Setting and participants QResearch database, comprising 1205 general practices in England with linkage to covid-19 test results, Hospital Episode Statistics, and death registry data. 6.08 million adults aged 19-100 years were included in the derivation dataset and 2.17 million in the validation dataset. The derivation and first validation cohort period was 24 January 2020 to 30 April 2020. The second temporal validation cohort covered the period 1 May 2020 to 30 June 2020. Main outcome measures The primary outcome was time to death from covid-19, defined as death due to confirmed or suspected covid-19 as per the death certification or death occurring in a person with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the period 24 January to 30 April 2020. The secondary outcome was time to hospital admission with confirmed SARS-CoV-2 infection. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance, including measures of discrimination and calibration, was evaluated in each validation time period. Results 4384 deaths from covid-19 occurred in the derivation cohort during follow-up and 1722 in the first validation cohort period and 621 in the second validation cohort period. The final risk algorithms included age, ethnicity, deprivation, body mass index, and a range of comorbidities. The algorithm had good calibration in the first validation cohort. For deaths from covid-19 in men, it explained 73.1% (95% confidence interval 71.9% to 74.3%) of the variation in time to death (R 2 ); the D statistic was 3.37 (95% confidence interval 3.27 to 3.47), and Harrell’s C was 0.928 (0.919 to 0.938). Similar results were obtained for women, for both outcomes, and in both time periods. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths within 97 days was 75.7%. People in the top 20% of predicted risk of death accounted for 94% of all deaths from covid-19. Conclusion The QCOVID population based risk algorithm performed well, showing very high levels of discrimination for deaths and hospital admissions due to covid-19. The absolute risks presented, however, will change over time in line with the prevailing SARS-C0V-2 infection rate and the extent of social distancing measures in place, so they should be interpreted with caution. The model can be recalibrated for different time periods, however, and has the potential to be dynamically updated as the pandemic evolves.


Author(s):  
Horst Feldmann

AbstractUsing data on 48 countries, this paper finds that people in economically freer countries care more about education. This is probably mainly because economic freedom enables them and their children to achieve higher returns to education. The magnitude of the estimated effect is substantial. The paper combines individual-level data from the World Values Survey with country-level data on economic freedom and other relevant factors. It controls for all relevant characteristics of survey respondents as well as for potentially confounding country-level characteristics. It also addresses potential endogeneity of economic freedom.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Krasimira Aleksandrova ◽  
Robin Reichmann ◽  
Rudolf Kaaks ◽  
Mazda Jenab ◽  
H. Bas Bueno-de-Mesquita ◽  
...  

Abstract Background Nutrition and lifestyle have been long established as risk factors for colorectal cancer (CRC). Modifiable lifestyle behaviours bear potential to minimize long-term CRC risk; however, translation of lifestyle information into individualized CRC risk assessment has not been implemented. Lifestyle-based risk models may aid the identification of high-risk individuals, guide referral to screening and motivate behaviour change. We therefore developed and validated a lifestyle-based CRC risk prediction algorithm in an asymptomatic European population. Methods The model was based on data from 255,482 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study aged 19 to 70 years who were free of cancer at study baseline (1992–2000) and were followed up to 31 September 2010. The model was validated in a sample comprising 74,403 participants selected among five EPIC centres. Over a median follow-up time of 15 years, there were 3645 and 981 colorectal cancer cases in the derivation and validation samples, respectively. Variable selection algorithms in Cox proportional hazard regression and random survival forest (RSF) were used to identify the best predictors among plausible predictor variables. Measures of discrimination and calibration were calculated in derivation and validation samples. To facilitate model communication, a nomogram and a web-based application were developed. Results The final selection model included age, waist circumference, height, smoking, alcohol consumption, physical activity, vegetables, dairy products, processed meat, and sugar and confectionary. The risk score demonstrated good discrimination overall and in sex-specific models. Harrell’s C-index was 0.710 in the derivation cohort and 0.714 in the validation cohort. The model was well calibrated and showed strong agreement between predicted and observed risk. Random survival forest analysis suggested high model robustness. Beyond age, lifestyle data led to improved model performance overall (continuous net reclassification improvement = 0.307 (95% CI 0.264–0.352)), and especially for young individuals below 45 years (continuous net reclassification improvement = 0.364 (95% CI 0.084–0.575)). Conclusions LiFeCRC score based on age and lifestyle data accurately identifies individuals at risk for incident colorectal cancer in European populations and could contribute to improved prevention through motivating lifestyle change at an individual level.


Sign in / Sign up

Export Citation Format

Share Document