Antimicrobial susceptibility, serotypes and genotypes ofPasteurella multocidaisolates associated with swine pneumonia in Taiwan

2017 ◽  
Vol 181 (12) ◽  
pp. 323-323 ◽  
Author(s):  
Jih-Ching Yeh ◽  
Dan-Yuan Lo ◽  
Shao-Kuang Chang ◽  
Chi-Chung Chou ◽  
Hung-Chih Kuo

Pasteurella multocida(PM) can cause progressive atrophic rhinitis and suppurative bronchopneumonia in pigs. The present study performed antimicrobial susceptibility testing and serotype and genotype identification on the 62 PM strains isolated from the lungs of diseased pigs with respiratory symptoms. Antimicrobial susceptibility testing examined 13 antimicrobial agents (amoxicillin, cefazolin, doxycycline, flumequine, enrofloxacin, florfenicol, kanamycin, lincomycin, Linco-Spectin (lincomycin and spectinomycin), erythromycin, tylosin, tilmicosin and tiamulin). Antimicrobial resistance ratios were over 40% in all of the antimicrobial agents except for cefazolin. The highest levels of resistance (100%) were found for kanamycin, erythromycin and tylosin. The majority of isolated strains was serotype D:L6 (n=35) followed by A:L3 (n=17). Comparison of the antimicrobial resistance levels between the two serotypes showed that the antimicrobial resistance rates were higher in D:L6 than in A:L3 for all the tested antimicrobials except for tylosin and tilmicosin. For PM witherm(B),erm(T) orerm(42), the results showed no significant difference compared with non-resistance gene strains in phenotype. Pulsed-field gel electrophoresis genotyping usingApaI restriction digestion of the genomic DNA demonstrated that there were 17 distinct clusters with a similarity of 85% or more, and the genotyping result was similar to that of serotyping. The results of the present study demonstrated that the PM isolated from diseased pigs in Taiwan was resistant to multiple antimicrobials, and the distribution of antimicrobial resistance was associated with pulsotype and serotype.

2019 ◽  
Vol 13 (2) ◽  
pp. 3-6
Author(s):  
Mashrura Quraishi ◽  
Ahmed Abu Saleh ◽  
Chandan Kumar Roy ◽  
Fatima Afroz ◽  
GM Mohiuddin

The present study was undertaken to determine the antimicrobial resistance pattern of Enterobacter species to guide the clinician in selecting the best antimicrobial agent for an individual patient. A total of 50 clinical isolates of Enterobacter species were collected from different clinical specimens at the microbiology laboratory of BSMMU between August, 2018 and September, 2019. The two main species of Enterobacter, E.cloacae and E.aerogenes were identified by biochemical tests. Antimicrobial susceptibility testing was performed by Kirby Bauer disc diffusion method and reported according to CLSI guidelines. Majority (56%) of the isolated Enterobacter were E.cloacae, 40% were E.aerogenes and 4% were other species. The Enterobacter isolates showed relatively high resistance rates to the cephalosporins including cefoxitin (82%), cefixime (62%), ceftazidime (46%) and ceftriaxone (46%). Resistance to the carbapenems and aminoglycosides was relatively low. The high resistance rates of Enterobacter species to multiple antibiotics makes it necessary for antimicrobial susceptibility testing to be conducted prior to antibiotic prescription. Bangladesh J Med Microbiol 2019; 13 (2): 3-6


2015 ◽  
Vol 9 (04) ◽  
pp. 333-337 ◽  
Author(s):  
Jiang Yaxian ◽  
Zuo Hui ◽  
Niu Hua ◽  
Mao Xiaoqin ◽  
Li Fengliang ◽  
...  

Introduction: Typhoid fever is a common disease in Yunnan province; however, the resistant phenotype and epidemic characteristics of Salmonella in this area are still unclear. In this study, a 15-year surveillance of antimicrobial susceptibility of Salmonella is reported. Methodology: From January 1999 to December 2013, Salmonella isolates were recovered from patients in the First People's Hospital of Yunnan Province. Antimicrobial susceptibility was detected and data were analyzed using WHONET5.6. Results: A total of 845 Salmonella isolates were recovered between 1999 and 2013. The most frequently isolated Salmonella serovar was S. Paratyphi A (93%), and 75.1% (635/845) of the isolates were from the young and middle-aged population. The resistance rates of Salmonella spp. to ciprofloxacin, ampicillin, and ceftriaxone increased dramatically during the 15 years. Carbapenems retained the highest and most stable activity against isolates. The resistance rates of all Salmonella isolates to chloramphenicol and sulfamethoxazole were 0.4% (3/845) and 1.8% (15/845), respectively. Conclusions: As Salmonella isolates have been observed to be resistant to first-line antibiotics, antimicrobial agents should be used rationally and prescriptions should be based on case-by-case susceptibility testing.


2019 ◽  
Vol 7 (12) ◽  
pp. 603 ◽  
Author(s):  
Aman Ullah Khan ◽  
Waleed S. Shell ◽  
Falk Melzer ◽  
Ashraf E. Sayour ◽  
Eman Shawkat Ramadan ◽  
...  

Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hend M. Abdulghany ◽  
Rasha M. Khairy

The current study aimed to use Coagulase gene polymorphism to identify methicillin-resistant Staphylococcus aureus (MRSA) subtypes isolated from nasal carriers in Minia governorate, Egypt, evaluate the efficiency of these methods in discriminating variable strains, and compare these subtypes with antibiotypes. A total of 400 specimens were collected from nasal carriers in Minia governorate, Egypt, between March 2012 and April 2013. Fifty-eight strains (14.5%) were isolated and identified by standard microbiological methods as MRSA. The identified isolates were tested by Coagulase gene RFLP typing. Out of 58 MRSA isolates 15 coa types were classified, and the amplification products showed multiple bands (1, 2, 3, 4, 5, and 8 bands). Coagulase gene PCR-RFLPs exhibited 10 patterns that ranged from 1 to 8 fragments with AluI digestion. Antimicrobial susceptibility testing with a panel of 8 antimicrobial agents showed 6 different antibiotypes. Antibiotype 1 was the most common phenotype with 82.7%. The results have demonstrated that many new variants of the coa gene are present in Minia, Egypt, different from those reported in the previous studies. So surveillance of MRSA should be continued.


2011 ◽  
Vol 74 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Salmonella, Campylobacter, and Escherichia coli isolates in fresh retail grain-fed veal obtained in Ontario, Canada. The prevalence and antimicrobial resistance patterns were examined for points of public health significance. Veal samples (n = 528) were collected from February 2003 through May 2004. Twenty-one Salmonella isolates were recovered from 18 (4%) of 438 samples and underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 6 (29%) of 21 Salmonella isolates; 5 (24%) of 21 isolates were resistant to five or more antimicrobials. No resistance to antimicrobials of very high human health importance was observed. Ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance was found in 5 (3%) of 21 Salmonella isolates. Campylobacter isolates were recovered from 5 (1%) of 438 samples; 6 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was documented in 3 (50%) of 6 Campylobacter isolates. No Campylobacter isolates were resistant to five or more antimicrobials or category I antimicrobials. E. coli isolates were recovered from 387 (88%) of 438 samples; 1,258 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 678 (54%) of 1,258 E. coli isolates; 128 (10%) of 1,258 were resistant to five or more antimicrobials. Five (0.4%) and 7 (0.6%) of 1,258 E. coli isolates were resistant to ceftiofur and ceftriaxone, respectively, while 34 (3%) of 1,258 were resistant to nalidixic acid. Ciprofloxacin resistance was not detected. There were 101 different resistance patterns observed among E. coli isolates; resistance to tetracycline alone (12.7%, 161 of 1,258) was most frequently observed. This study provides baseline prevalence and antimicrobial resistance data and highlights potential public health concerns.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
A. S. Gargis ◽  
H. P. McLaughlin ◽  
A. B. Conley ◽  
C. Lascols ◽  
P. A. Michel ◽  
...  

ABSTRACTPenicillin (PEN) is a low-cost option for anthrax treatment, but naturally occurring resistance has been reported. β-Lactamase expression (bla1,bla2) inBacillus anthracisis regulated by a sigma factor (SigP) and its cognate anti-sigma factor (RsiP). Mutations leading to truncation of RsiP were previously described as a basis for PEN resistance. Here, we analyze whole-genome sequencing (WGS) data and compare the chromosomalsigP-bla1regions from 374B. anthracisstrains to determine the frequency of mutations, identify mutations associated with PEN resistance, and evaluate the usefulness of WGS for predicting PEN resistance. Few (3.5%) strains contained at least 1 of 11 different mutations insigP,rsiP, orbla1.Nine of these mutations have not been previously associated with PEN resistance. Four strains showed PEN resistance (PEN-R) by conventional broth microdilution, including 1 strain with a novel frameshift inrsiP. One strain that carries the samersiPframeshift mutation as that found previously in a PEN-R strain showed a PEN-susceptible (PEN-S) phenotype and exhibited decreasedbla1andbla2transcription. An unexpectedly small colony size, a reduced growth rate, and undetectable β-lactamase activity levels (culture supernatant and cell lysate) were observed in this PEN-S strain. Sequence analysis revealed mutations in genes associated with growth defects that may contribute to this phenotype. WhileB. anthracisrsiPmutations cannot be exclusively used to predict resistance, four of the five strains withrsiPmutations were PEN-R. Therefore, theB. anthracissigP-bla1region is a useful locus for WGS-based PEN resistance prediction, but phenotypic testing remains essential.IMPORTANCEDetermination of antimicrobial susceptibility ofB. anthracisis essential for the appropriate distribution of antimicrobial agents for postexposure prophylaxis (PEP) and treatment of anthrax. Analysis of WGS data allows for the rapid detection of mutations in antimicrobial resistance (AMR) genes in an isolate, but the presence of a mutation in an AMR gene does not always accurately predict resistance. As mutations in the anti-sigma factor RsiP have been previously associated with high-level penicillin resistance in a limited number of strains, we investigated WGS assemblies from 374 strains to determine the frequency of mutations and performed functional antimicrobial susceptibility testing. Of the five strains that contained mutations inrsiP, only four were PEN-R by functional antimicrobial susceptibility testing. We conclude that while sequence analysis of this region is useful for AMR prediction inB. anthracis, genetic analysis should not be used exclusively and phenotypic susceptibility testing remains essential.


2019 ◽  
Vol 67 (4) ◽  
pp. 489-498
Author(s):  
Dolores Cid ◽  
José Francisco Fernández-Garayzábal ◽  
Chris Pinto ◽  
Lucas Domínguez ◽  
Ana Isabel Vela

Pasteurella multocida is responsible for economically important diseases in sheep and pigs. Antimicrobial susceptibility studies are essential for initiating rational and effective empirical therapy of P. multocida infections. In this study we investigated the antimicrobial susceptibility to 18 antimicrobial agents of 156 clinical isolates of P. multocida from sheep (n = 87) and pigs (n = 69) using the microdilution method. Both sheep and pig isolates exhibited low levels of resistance (≤ 15%) to ceftiofur, gentamicin, neomycin, spectinomycin, chlortetracycline, tulathromycin, florfenicol, danofloxacin, and enrofloxacin and trimethoprim/sulphamethoxazole, high resistance rates (> 15% up to 50%) to oxytetracycline, tilmicosin, and tiamulin, and very high resistance rates (> 50%) to tylosin tartrate, clindamycin, and sulphadimethoxine. However, sheep isolates exhibited significantly lower percentages of resistance and lower MIC90 values (P < 0.05) than pig isolates for most of the antimicrobials tested. In addition, sheep isolates exhibited also significantly lower phenotypic antimicrobial resistance diversity (8 resistotypes vs. 30 resistotypes). LAC-LIN-SUL-MAC was the resistotype most frequently detected in sheep (39.1%) and LIN-SUL-MAC in pig isolates (26.1%). The differences in susceptibility patterns could be influenced by the lower use of antimicrobials in the small ruminant industry compared with the pig farming industry.


2015 ◽  
Vol 144 (4) ◽  
pp. 686-690 ◽  
Author(s):  
J. FISCHER ◽  
K. HILLE ◽  
A. MELLMANN ◽  
F. SCHAUMBURG ◽  
L. KREIENBROCK ◽  
...  

SUMMARYExtended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) have recently emerged in livestock and humans. Therefore, this study assessed the carriage of Enterobacteriaceae in the anterior nares and associated antimicrobial resistance in pig-exposed persons. Nasal swabs were enriched in non-selective broth and then plated on MacConkey and ESBL-selective agars. Species was confirmed by matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry (MALDI-ToF MS). Antimicrobial susceptibility testing was performed according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Of 114 pig-exposed persons tested, Enterobacteriaceae were detected in the nares of 76 (66·7%) participants. The predominant species were Proteus mirabilis (n = 17, 14·9%), Pantoea agglomerans (n = 13, 11·4%), Morganella morganii (n = 9, 7·9%), Citrobacter koseri (n = 9, 7·9%), Klebsiella pneumoniae, Escherichia coli and Proteus vulgaris (each n = 8, 7·0%). ESBL-E were not detected. Of all isolates tested, 3·4% were resistant against ciprofloxacin, 2·3% against gentamicin, 23·9% against trimethoprim-sulfamethoxazole and 44·3% against tigecycline. Despite the high prevalence of ESBL-E in livestock, pig-exposed persons did not carry ESBL-E in their nares. This finding is important, because colonization of the nasal reservoir might cause endogenous infections or facilitate transmission of ESBL-E in the general population.


Sign in / Sign up

Export Citation Format

Share Document