Peak forelimb ground reaction forces experienced by dogs jumping from a simulated car boot

2018 ◽  
Vol 182 (25) ◽  
pp. 716-716 ◽  
Author(s):  
David Pardey ◽  
Gillian Tabor ◽  
James Andrew Oxley ◽  
Alison P Wills

Many dog owners allow their pets to jump out of a car boot; however, to date, there has been no study that has investigated whether this places dogs at risk of injury. The aim of this study was to investigate the relationship between height and peak vertical ground reaction force (vGRF) in static start jumps. Fifteen healthy adult dogs performed three jumps from a platform that represented common vehicle boot sill heights (0.55, 0.65, 0.75 m), landing on a single force platform. Kinetic data (mediolateral (Fx), craniocaudal (Fy) and vertical (Fz)) were normalised for body weight and analysed via a one-way repeated analysis of variance (ANOVA) and pairwise post hoc tests with a Bonferroni correction applied. There was a significant difference in peak forelimb vGRF between both the 0.55 m (27.35±4.14 N/kg) and the 0.65 m (30.84±3.66 N/kg) platform (P=0.001) and between the 0.65 and 0.75 m (34.12±3.63 N/kg) platform (P=0.001). There was no significant difference in mediolateral or craniocaudal forces between the heights examined. These results suggest that allowing dogs to jump from bigger cars with a higher boot sill may result in augmented levels of loading on anatomical structures. Further research is required to investigate the kinematic effects of height on static jump-down and how peak forelimb vGRF relates to anatomical loading and subsequent injury risk.

2021 ◽  
Vol 12 ◽  
Author(s):  
AmirAli Jafarnezhadgero ◽  
Elahe Mamashli ◽  
Urs Granacher

BackgroundThe prevalence of diabetes worldwide is predicted to increase from 2.8% in 2000 to 4.4% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility.ObjectiveWe aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN.MethodsSixty male and female individuals aged 45–65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40–55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s.ResultsNo statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001–0.037; d = 0.56–1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001–0.044; d = 0.54–0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28).ConclusionsThis study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0020 ◽  
Author(s):  
Irene Davis ◽  
Todd Hayano ◽  
Adam Tenforde

Category: Other Introduction/Purpose: While the etiology of injuries is multifactorial, impact loading, as measured by the loadrate of the vertical ground reaction force has been implicated. These loadrates are typically measured with a force plate. However, this limits the measure of impacts to laboratory environments. Tibial acceleration, another measure of running impacts, is considered a surrogate for loadrate. It can be measured using new wearable technology that can be used in a runner’s natural environment. However, the correlation between tibial acceleration measured from mobile devices and vertical ground reaction force loadrates, measured from forceplates, is unknown. The purpose of this study was to determine the correlation between vertical and resultant loadrates to vertical and resultant tibial acceleration across different footstrike patterns (FSP) in runners. Methods: The study involved a sample of convenience made up of 169 runners (74 F, 95 M; age: 38.66±13.08 yrs) presenting at a running injury clinic. This included 25 habitual forefoot strike (FFS), 17 midfoot strike (MFS) and 127 rearfoot strike (RFS) runners. Participants ran on an instrumented treadmill (average speed 2.52±0.25 m/s), with a tri-axial accelerometer attached at the left distal medial tibia. Only subjects running with pain <3/10 on a VAS scale during the treadmill run were included to reduce the confounding effect of pain. Vertical average, vertical instantaneous and resultant instantaneous loadrates (VALR, VILR and RILR) and peak vertical and resultant tibial accelerations (VTA, RTA) were averaged for 8 consecutive left steps. Correlation coefficients (r) were calculated between tibial accelerations and loadrates. Results: All tibial accelerations were significantly correlated across all loadrates, with the exception of RTA with VILR for FFS (Table 1) which was nearly significant (p=0.068). Correlations ranged from 0.37-0.82. VTA was strongly correlated with all loadrates (r = 0.66). RTA was also strongly correlated with both loadrates for RFS and MFS, but only moderately correlated with loadrates for FFS (r = 0.47). Correlations were similar across the different loadrates (VALR, VILR, RILR). Conclusion: The stronger correlation between vertical tibial acceleration and all loadrates (VALR, VILR, RILR) suggests that it may be the best surrogate for loadrates when studying impact loading in runners.


2020 ◽  
Vol 29 (5) ◽  
pp. 541-546
Author(s):  
Caroline Lisee ◽  
Tom Birchmeier ◽  
Arthur Yan ◽  
Brent Geers ◽  
Kaitlin O’Hagan ◽  
...  

Context: Landing kinetic outcomes are associated with injury risk and may be persistently altered after anterior cruciate ligament injury or reconstruction. However, it is challenging to assess kinetics clinically. The relationship between sound characteristics and kinetics during a limited number of functional tasks has been supported as a potential clinical alternative. Objective: To assess the relationship between kinetics and sound characteristics during a single-leg landing task. Design: Observational Setting: Laboratory. Participants: There was total of 26 healthy participants (15 males/11 females, age = 24.8 [3.6] y, height = 176.0 [9.1] cm, mass = 74.9 [14.4] kg, Tegner Activity Scale = 6.1 [1.1]). Intervention: Participants completed single-leg landings onto a force plate while audio characteristics were recorded. Main Outcome Measures: Peak vertical ground reaction force, linear loading rate, instantaneous loading rate, peak sound magnitude, sound frequency were measured. Means and SDs were calculated for each participant’s individual limbs. Spearman rho correlations were used to assess the relationships between audio characteristics and kinetic outcomes. Results: Peak sound magnitude was positively correlated with normalized peak vertical ground reaction force (ρ = .486, P = .001); linear loading rate (ρ = .491, P = .001); and instantaneous loading rate (ρ = .298, P = .03). Sound frequency was negatively correlated with instantaneous loading rate (ρ = −.444, P = .001). Conclusions: Peak sound magnitude may be more helpful in providing feedback about an individual’s normalized vertical ground reaction force and linear loading rate, and sound frequency may be more helpful in providing feedback about instantaneous loading rate. Further refinement in sound measurement techniques may be required before these findings can be applied in a clinical population.


1986 ◽  
Vol 2 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Edward C. Frederick ◽  
John L. Hagy

Nine subjects (6 males, 3 females) ranging in body mass from 90.9 to 45.5 kg ran repeated trials across a force platform while being filmed at 50 fps. The subjects ran five barefooted trials at each of three speeds: 3.35, 3.83, and 4.47 m · s−1. Force data were collected on-line and analyzed for the magnitude and temporal characteristics of the initial impact (Fz1) peak and the active (Fz2) peak of vertical ground reaction force (VGRF). Multiple regression and correlation analysis were used to study the relationship between the magnitudes of these kinetic data and kinematic and anthropometric data taken from the film and from measurements of the subjects. The results support the general conclusion that speed and, indirectly, body mass are significant effectors of the magnitudes of Fz1. In addition, other factors that correlate significantly with Fz1 are reciprocal ponderal index (RPI) and stature; half-stride length, step length, leg length, and vertical hip excursion during a half-stride cycle; and hip offset, contact angle, and dorsiflexion angle at contact. Body mass correlates highly with Fz2 (r = 0.95). Other significant factors correlating with Fz2 are RPI, stature, vertical hip excursion, dorsiflexion angle, hip offset, half-stride length, and step length. These data support earlier findings that speed and the effective mass of the leg at contact are important effectors of the magnitude of Fzl. In addition, the kinematic and anthropometric parameters that contribute significantly to the variability in Fzl and F are generally cross-correlated with body size and/or running speed.


2013 ◽  
Vol 10 (84) ◽  
pp. 20130241 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards.


2020 ◽  
Vol 14 (2) ◽  
pp. 53-61
Author(s):  
Cynthia Hiraga ◽  
Camila Siriani ◽  
Paulo Ricardo Higassiaraguti Rocha ◽  
Débora Alves Souza ◽  
José Angelo Barela

BACKGROUND: Different amounts of force are needed to produce an effective turn for the pirouette, especially vertical force. AIM: To examine the vertical force produced by the supporting leg during the execution of a pirouette en dehors of ballet dancer and non-dancer participants. METHOD: The participants included five ballet dancers who composed the ballet dancer group and eight girls without previous experience of dance training who composed the non-dancer group. The participants were invited to execute the pirouette en dehors on a force platform with each leg as the supporting leg. Two-way analyses of variance were used to test vertical reaction forces between the two groups over the preferred and non-preferred leg. RESULTS: Among the three vertical forces measured in the present study, the maximum vertical peak for the initial impulse was significantly higher for the ballet dancers compared to the non-dancer girls. The minimum vertical force and maximum vertical peak for the final impulse were similar between both groups. CONCLUSION: The results suggest that the initial vertical force may be critical to the pirouette en dehors, determining proficient execution of this movement in ballet dancers.


2015 ◽  
Vol 28 (3) ◽  
pp. 459-466
Author(s):  
Giulia Pereira ◽  
Aluísio Otavio Vargas Avila ◽  
Rudnei Palhano

AbstractIntroduction Footwear is no longer just an accessory but also a protection for the musculoskeletal system, and its most important characteristic is comfort.Objectives This study aims to identify and to analyze the vertical ground reaction force in barefoot women and women with unstable shoes.Methodology Five women aged 25 ± 4 years old and mass of 50 ± 7 kg participated in this study. An AMTI force plate was used for data acquisition. The 10 trials for each situation were considered valid where the subject approached the platform with the right foot and at the speed of 4 km/h ± 5%. The instable shoe of this study is used in the practice of physical activity.Results The results showed that the first peak force was higher for the footwear situation, about 5% and significant differences between the barefoot and footwear situation. This significant difference was in the first and second peaks force and in the time of the second peak.Conclusion The values showed that the footwear absorbs approximately 45% of the impact during gait.


Author(s):  
Chi-Yin Tse ◽  
Hamid Nayeb-Hashemi ◽  
Ashkan Vaziri ◽  
Paul K. Canavan

The pathomechanics of knee anterior cruciate ligament (ACL) injury related to the female athlete is of high interest due to the high incidence of injury compared to males participating in the same sport. The mechanisms of ACL injury are still not completely understood, but it is known that single-leg landings, stopping and cutting at high velocity are some of the non-contact mechanisms that are causing these injuries. This study analyzed a subject specific analysis of a single-leg drop landing that was performed by a female subject at 60%, 80% and 100% of her maximum vertical jump. The femur, tibia, articular cartilage, and menisci were modeled as 3-D structures and the data collected from the motion analysis was used to obtain the knee joint contact stresses in finite element analysis (FEA). The four major ligaments of the knee were modeled as non-linear springs. Material properties of previously published studies were used to define the soft tissue structures. The articular cartilage was defined as isotropic elastic and the menisci were defined as transverse isotropic elastic. Two different styles of single-leg landings were compared to one another, resembling landing from a basketball rebound. The first landing style, single-leg arms up (SLAU), produced larger knee flexion angles at peak ground reaction forces, while single-leg arms across (SLAX) landings produced higher peak vertical ground reaction forces along with lower knee flexion angles. The mean peak vertical ground reaction force was 2.9–3.5 bodyweight for SLAU landings, while they were 3.0–3.8 for SLAX landings. The time to peak vertical ground reaction force with SLAU landings were 69 ms (60%), 60 ms (80%), and 55 ms (100%); SLAX landings were 61 ms (60%), 61 ms (80%), and 51 ms (100%).


2013 ◽  
Vol 19 (4) ◽  
pp. 737-745
Author(s):  
Carlos Gabriel Fábrica ◽  
Paula V. González ◽  
Jefferson Fagundes Loss

Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship between the set of contractile and elastic components of the lower limbs. We determined that jumping performance is based on impulsion optimization and not on instantaneous ground reaction force value: the time in which the ground reaction force was lower than the body weight, and negative external work time was lower under fatigue. The results suggest that, during fatigue, there is less contribution from elastic energy and from overall active state. However, the participation of contractile elements could partially compensate for the worsening of jumping performance.


Sign in / Sign up

Export Citation Format

Share Document