scholarly journals Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men

2013 ◽  
Vol 38 (7) ◽  
pp. 779-788 ◽  
Author(s):  
Cheyne E. Donges ◽  
Rob Duffield ◽  
Kym J. Guelfi ◽  
Greg C. Smith ◽  
David R. Adams ◽  
...  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Lene Rørholm Pedersen ◽  
Rasmus Huan Olsen ◽  
Christian Anholm ◽  
Arne Astrup ◽  
Jesper Eugen-Olsen ◽  
...  

Abstract Background Dyslipidaemia and low-grade inflammation are central in atherogenesis and linked to overweight and physical inactivity. Lifestyle changes are important in secondary prevention of coronary artery disease (CAD). We compared the effects of combined weight loss and interval training with interval training alone on physical fitness, body composition, dyslipidaemia and low-grade inflammation in overweight, sedentary participants with CAD. Methods Seventy CAD patients, BMI 28–40 kg/m2 and age 45–75 years were randomised to (1) 12 weeks’ aerobic interval training (AIT) at 90% of peak heart rate three times/week followed by 40 weeks’ AIT twice weekly or (2) a low energy diet (LED) (800–1000 kcal/day) for 8–10 weeks followed by 40 weeks’ weight maintenance including AIT twice weekly and a high-protein/low-glycaemic load diet. Effects of the intervention were evaluated by physical fitness, body weight and composition. Dyslipidaemia was described using both biochemical analysis of lipid concentrations and lipoprotein particle subclass distribution determined by density profiling. Low-grade inflammation was determined by C-reactive protein, soluble urokinase-type plasminogen activator receptor and tumour necrosis factor α. Effects on continuous outcomes were tested by mixed-models analysis. Results Twenty-six (74%) AIT and 29 (83%) LED + AIT participants completed the study. At baseline subject included 43 (78%) men; subjects averages were: age 63 years (6.2), body weight 95.9 kg (12.2) and VO2peak 20.7 mL O2/kg/min (4.9). Forty-six (84%) had pre-diabetes (i.e. impaired fasting glucose and/or impaired glucose tolerance). LED + AIT reduced body weight by 7.2 kg (− 8.4; − 6.1) and waist circumference by 6.6 cm (− 7.7; − 5.5) compared to 1.7 kg (− 0.7; − 2.6) and 3.3 cm (− 5.1; − 1.5) after AIT (within-group p < 0.001, between-group p < 0.001 and p = 0.018, respectively). Treatments caused similar changes in VO2peak and lowering of total cholesterol, triglycerides, non-HDL cholesterol and low-grade inflammation. A shift toward larger HDL particles was seen following LED + AIT while AIT elicited no change. Conclusions Both interventions were feasible. Both groups obtained improvements in VO2peak, serum-lipids and inflammation with superior weight loss and greater central fat loss following LED + AIT. Combined LED induced weight loss and exercise can be recommended to CAD patients. Trial registration NCT01724567, November 12, 2012, retrospectively registered (enrolment ended in April 2013).


2009 ◽  
Vol 104 (2) ◽  
pp. 240-246 ◽  
Author(s):  
Benoit J. Arsenault ◽  
Amélie Cartier ◽  
Mélanie Côté ◽  
Isabelle Lemieux ◽  
Angelo Tremblay ◽  
...  

2018 ◽  
Vol 108 (6) ◽  
pp. 1324-1333 ◽  
Author(s):  
Diego Moretti ◽  
Samuel Mettler ◽  
Christophe Zeder ◽  
Carsten Lundby ◽  
Anneke Geurts-Moetspot ◽  
...  

ABSTRACT Background Iron status is a determinant of physical performance, but training may induce both low-grade inflammation and erythropoiesis, exerting opposing influences on hepcidin and iron metabolism. To our knowledge, the combined effects on iron absorption and utilization during training have not been examined directly in humans. Objective We hypothesized that 3 wk of exercise training in recreational male runners would decrease oral iron bioavailability by increasing inflammation and hepcidin concentrations. Design In a prospective intervention, nonanemic, iron-sufficient men (n = 10) completed a 34-d study consisting of a 16-d control phase and a 22-d exercise-training phase of 8 km running every second day. We measured oral iron absorption and erythroid iron utilization using oral 57Fe and intravenous 58Fe tracers administered before and during training. We measured hemoglobin mass (mHb) and total red blood cell volume (RCV) by carbon monoxide rebreathing. Iron status, interleukin-6 (IL-6), plasma hepcidin (PHep), erythropoietin (EPO), and erythroferrone were measured before, during, and after training. Results Exercise training induced inflammation, as indicated by an increased mean ± SD IL-6 (0.87 ± 1.1 to 5.17 ± 2.2 pg/mL; P < 0.01), while also enhancing erythropoiesis, as indicated by an increase in mean EPO (0.66 ± 0.42 to 2.06 ± 1.6 IU/L), mHb (10.5 ± 1.6 to 10.8 ± 1.8 g/kg body weight), and mean RCV (30.7 ± 4.3 to 32.7 ± 4.6 mL/kg) (all P < 0.05). Training tended to increase geometric mean iron absorption by 24% (P = 0.083), consistent with a decreased mean ± SD PHep (7.25 ± 2.14 to 5.17 ± 2.24 nM; P < 0.05). The increase in mHb and erythroid iron utilization were associated with the decrease in PHep (P < 0.05). Compartmental modeling indicated that iron for the increase in mHb was obtained predominantly (>80%) from stores mobilization rather than from increased dietary absorption. Conclusions In iron-sufficient men, mild intensification of exercise intensity increases both inflammation and erythropoiesis. The net effect is to decrease hepcidin concentrations and to tend to increase oral iron absorption. This trial was registered at clinicaltrials.gov as NCT01730521.


Author(s):  
Paola Gonzalo-Encabo ◽  
Gonzalo Maldonado ◽  
David Valadés ◽  
Carmen Ferragut ◽  
Alberto Pérez-López

Low-grade systemic inflammation leads to critical alterations of several tissues and organs that can promote the appearance of non-communicable diseases, a risk that is increased in adults with obesity. Exercise training may counteract low-grade systemic inflammation, but there is a lack of consensus on how cytokines are modulated by training in adults with obesity. This study aimed of examining the effects of exercise training on circulating pro- and anti-inflammatory cytokines in adults with overweight and obesity, and whether exercise-induced fat mass reduction could mediate that effect. The search was conducted on Medline (Pubmed), SPORTDiscus and Web of Science databases from January 1998 to August 2021, using keywords pertaining to inflammation, exercise, and obesity. A total of 27 studies were selected, in which the circulating concentration levels of cytokines were analyzed. Endurance training (ET) decreased circulating CRP, IL-6 and TNF-α levels. TNF-α was reduced after resistance and concurrent training (CT), while IL-10 increased after resistance training (RT). Changes in IL-10 and CRP coincided with fat mass reduction, while decreased TNF-α levels were concomitant with changes in IL-6 and IL-10. Exercise training may reduce systemic low-grade inflammation profile in adults with overweight and obesity.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Kishiko Ogawa ◽  
Kiyoshi Sanada ◽  
Shuichi Machida ◽  
Mitsuharu Okutsu ◽  
Katsuhiko Suzuki

Aging is associated with low-grade inflammation. The benefits of regular exercise for the elderly are well established, whereas less is known about the impact of low-intensity resistance exercise on low-grade inflammation in the elderly. Twenty-one elderly women (mean age ± SD, 85.0 ± 4.5 years) participated in 12 weeks of resistance exercise training. Muscle thickness and circulating levels of C-reactive protein (CRP), serum amyloid A (SAA), heat shock protein (HSP)70, tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, monocyte chemotactic protein (MCP-1), insulin, insulin-like growth factor (IGF)-I, and vascular endothelial growth factor (VEGF) were measured before and after the exercise training. Training reduced the circulating levels of CRP, SAA (P<.05), HSP70, IGF-I, and insulin (P<.01). The training-induced reductions in CRP and TNF-α were significantly (P<.01,P<.05) associated with increased muscle thickness (r=−0.61,r=−0.54), respectively. None of the results were significant after applying a Bonferroni correction. Resistance training may assist in maintaining or improving muscle volume and reducing low-grade inflammation.


Sign in / Sign up

Export Citation Format

Share Document