scholarly journals Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation

2016 ◽  
Vol 41 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Ariel M. Johnson ◽  
Stephanie P. Kurti ◽  
Joshua R. Smith ◽  
Sara K. Rosenkranz ◽  
Craig A. Harms

A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENOincreased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENOand TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.

2014 ◽  
Vol 46 ◽  
pp. 10
Author(s):  
Ariel M. Johnson ◽  
Stephanie P. Kurti ◽  
Joshua R. Smith ◽  
Sara K. Rosenkranz ◽  
Craig A. Harms

2016 ◽  
Vol 41 (12) ◽  
pp. 1278-1284 ◽  
Author(s):  
Renata Lopes Krüger ◽  
Bruno Costa Teixeira ◽  
Juliano Boufleur Farinha ◽  
Rodrigo Cauduro Oliveira Macedo ◽  
Francesco Pinto Boeno ◽  
...  

The aim of this study was to compare the effects of 2 different exercise intensities on postprandial lipemia, oxidative stress markers, and endothelial function after a high-fat meal (HFM). Eleven young men completed 2-day trials in 3 conditions: rest, moderate-intensity exercise (MI-Exercise) and heavy-intensity exercise (HI-Exercise). Subjects performed an exercise bout or no exercise (Rest) on the evening of day 1. On the morning of day 2, an HFM was provided. Blood was sampled at fasting (0 h) and every hour from 1 to 5 h during the postprandial period for triacylglycerol (TAG), thiobarbituric acid reactive substance (TBARS), and nitrite/nitrate (NOx) concentrations. Flow-mediated dilatation (FMD) was also analyzed. TAG concentrations were reduced in exercise conditions compared with Rest during the postprandial period (P < 0.004). TAG incremental area under the curve (iAUC) was smaller after HI-Exercise compared with Rest (P = 0.012). TBARS concentrations were reduced in MI-Exercise compared with Rest (P < 0.041). FMD was higher in exercise conditions than Rest at 0 h (P < 0.02) and NOx concentrations were enhanced in MI-Exercise compared with Rest at 0 h (P < 0.01). These results suggest that acute exercise can reduce lipemia after an HFM. However, HI-Exercise showed to be more effective in reducing iAUC TAG, which might suggest higher protection against postprandial TAG enhancement. Conversely, MI-Exercise can be beneficial to attenuate the susceptibility of oxidative damage induced by an HFM and to increase endothelial function in the fasted state compared with Rest.


2014 ◽  
Vol 26 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Keith Tolfrey ◽  
Alice Emily Thackray ◽  
Laura Ann Barrett

Exaggerated postprandial triacylglycerol concentrations (TAG) independently predict future cardiovascular events. Acute exercise and diet interventions attenuate postprandial TAG in adults. This paper aims to examine the exercise postprandial lipemia studies published to date in young people. Nine studies satisfied the inclusion criteria adopted for this summary. The majority of studies are in boys (22% girls) and have shown a single ~60-min session of moderate-intensity exercise, performed 12-18 hours before a standardized meal, reduces postprandial TAG. Manipulations of exercise duration and intensity suggest an exercise energy expenditure dose-dependent response is not supported directly in healthy young people. Studies investigating alternative exercise bouts have reported lower postprandial TAG after simulated intermittent games activity, high-intensity interval running and cumulative 10-min blocks over several hours, which may appeal to the spontaneous physical activity habits of young people. Although extension of these initial findings is warranted, exercise may be an effective strategy to promote regular benefits in TAG metabolism in children and adolescents; this may contribute to an improved cardiovascular disease risk profile early in life.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Stephanie P. Kurti ◽  
Sara K. Rosenkranz ◽  
Morton Levitt ◽  
Brooke J. Cull ◽  
Colby S. Teeman ◽  
...  

We investigated whether an acute bout of moderate intensity exercise in the postprandial period attenuates the triglyceride and airway inflammatory response to a high-fat meal (HFM) compared to remaining inactive in the postprandial period. Seventeen (11 M/6 F) physically active (≥150 min/week of moderate-vigorous physical activity (MVPA)) subjects were randomly assigned to an exercise (EX; 60%VO2peak) or sedentary (CON) condition after a HFM (10 kcal/kg, 63% fat). Blood analytes and airway inflammation via exhaled nitric oxide (eNO) were measured at baseline, and 2 and 4 hours after HFM. Airway inflammation was assessed with induced sputum and cell differentials at baseline and 4 hours after HFM. Triglycerides doubled in the postprandial period (~113 ± 18%,P<0.05), but the increase did not differ between EX and CON. Percentage of neutrophils was increased 4 hours after HFM (~17%), but the increase did not differ between EX and CON. Exhaled nitric oxide changed nonlinearly from baseline to 2 and 4 hours after HFM(P<0.05, η2=0.36). Our findings suggest that, in active individuals, an acute bout of moderate intensity exercise does not attenuate the triglyceride or airway inflammatory response to a high-fat meal.


2018 ◽  
Vol 3 (2) ◽  
pp. 484-487
Author(s):  
Santosh Kumar Deo ◽  
Kopila Agrawal ◽  
Prem Bhattrai ◽  
Raju Kumar Chaudhary

Introduction: Working memory is a kind of short term memory important for reasoning and guiding decision-making and behavioral process.Objective: The goal of the present research was to study the outcome of single bout of acute moderate-intensity exercise on working memory.Methodology: Twenty two male subjects were asked to perform working memory task by 2n back task in baseline resting, immediately after exercise and after five minute of exercise session. 3 minute step test procedure was used as a moderate intensity exercise intervention.Results: The percentage correctness of 2n back task of working memory was found to be 64.36% for baseline resting condition, 78.01 % for immediately after 3-minute step test and 80.70% for 5 minute after the exercise. In both exercise session (i.e. immediately after exercise and after 5 minute of exercise), significant improvement (p value <0.05) in working memory was seen as compared to the baseline resting session while no such significant beneficial improvement was seen when compared between immediately after exercise and after 5 minute of exercise.Conclusion: Improvement in working memory after moderate exercise intervention was seen, which is important for learning and memory and decision-making.  BJHS 2018;3(2)6:484-487.


2018 ◽  
Vol 7 (12) ◽  
pp. 486 ◽  
Author(s):  
Breanna Wade ◽  
Paul Loprinzi

Emerging work suggests that acute, moderate-intensity aerobic exercise may help to subserve episodic memory of neutral stimuli. Less investigated, however, is whether acute exercise is associated with enhanced memory recognition of emotional stimuli, which was the purpose of this experiment. A parallel-group randomized controlled experiment was employed. Participants (mean age = 20 yr) were randomized into an exercise (n = 17) or control group (n = 17). The exercise group engaged in a 15-min bout of moderate-intensity treadmill walking. Emotional memory recognition was assessed via images from the International Affective Picture System, including assessments of varying degrees of valence and arousal. Memory recognition was assessed at 1 day, 7 days, and 14 days post-memory encoding. We observed a significant main effect for time (F(2) = 104.2, p < 0.001, η2p = 0.77) and a significant main effect for valence–arousal classification (F(4) = 21.39, p < 0.001, η2p = 0.40), but there was no significant time by group interaction (F(2) = 1.09, p = 0.34, η2p = 0.03), classification by group interaction (F(4) = 0.12, p = 0.97, η2p = 0.01), time by classification interaction (F(8) = 1.78, p = 0.08, η2p = 0.05), or time by classification by group interaction (F(8) = 0.78, p = 0.62, η2p = 0.02). In conclusion, emotional memory recognition decreased over the 14-day follow-up period and this rate of memory decay was not altered by acute moderate-intensity exercise engagement. We discuss these findings in the context of exercise intensity and the temporal effects of exercise.


2020 ◽  
Vol 9 (2) ◽  
pp. 310-315
Author(s):  
Cornelius Coli ◽  
Gadis Meinar Sari ◽  
Purwo Sri Rejeki

This study aims to analyze acute moderate intensity exercise decreases oxygen saturation in obese women. True experiment with a randomized control group design posttest-only design using 14 obese women aged 19-24 years, body mass index 27-33 kg/m2, percentage body fat (PBF) above 30 % and fasting blood glucose (FBG) below 100 mg/dL, normal hemoglobin, normal systolic and diastolic blood pressure, normal resting heart rate and randomly divided into two groups, namely CON (n=7, control without intervention) and MIE (n=7, moderate intensity exercise). Moderate intensity exercise interventions carried out for 40 minutes using a treadmill. Blood sampling is done 10 minutes after the intervention. Measurement of oxygen saturation using a Pulse Oximeter. The results obtained mean oxygen saturation at CON (98.428±0.534) % and MIE (96.571±0.975) % (p=0.001). Based on the results of the study concluded that moderate moderate intensity acute exercise reduces oxygen saturation in obese women.


2019 ◽  
Vol 126 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Corinna Serviente ◽  
Amy Burnside ◽  
Sarah Witkowski

Endothelial microparticles (EMPs) are related to cardiovascular disease (CVD) risk. Risk factors for CVD increase with menopause, and greater cardiorespiratory fitness is generally expected to reduce CVD risk. The effects of habitual physical activity on endothelial health may be due in part to the effect of acute exercise on circulating EMPs. This study was performed to evaluate the effect of an acute bout of exercise on CD62E+ and CD31+/42b− EMPs in healthy fit midlife women at different menopausal stages. Healthy, active premenopausal (PRE), perimenopausal (PERI), and postmenopausal (POST) women completed a single bout of moderate-intensity treadmill exercise. Activated (CD62E+) and apoptotic (CD31+/42b−) EMPs were evaluated before and 30 min after exercise by using fluorescent activated cell sorting. In an exploratory analysis, these results were compared with data from low-fit peri- and postmenopausal women. Differences by group and time point were evaluated with repeated-measure ANOVAs. There was a reduction in the number of total microparticles ( P < 0.001), CD62E+ ( P = 0.003), and CD31+/42b− ( P < 0.001) EMPs/μl plasma following acute exercise. The percentage of CD62E+ EMPs increased with acute exercise ( P < 0.001), whereas the percentage of CD31+/42b− EMPs did not change ( P = 0.40). There was no effect of menopausal status on CD62E+or CD31+/42b− EMPs, or on total microparticles (all P > 0.05). The exploratory analysis revealed that low-fit women had similar changes in EMPs with acute exercise. We concluded that acute moderate-intensity exercise reduces CD62E+and CD31+/42b− EMPs, as well as total microparticles, in healthy midlife women. These effects occurred despite differences in menopausal status and fitness. NEW & NOTEWORTHY This study demonstrates that acute moderate-intensity exercise reduces activated and apoptotic endothelial microparticles in healthy midlife women.


2021 ◽  
Vol 33 (2) ◽  
pp. 82-89
Author(s):  
Yasmeen Mezil ◽  
Joyce Obeid ◽  
Inna Ushcatz ◽  
Sandeep Raha ◽  
Brian W. Timmons

Purpose: In girls and women, the authors studied the effects of an acute bout of low-impact, moderate-intensity exercise serum on myoblast and osteoblast proliferation in vitro. Methods: A total of 12 pre/early pubertal girls (8–10 y old) and 12 women (20–30 y old) cycled at 60% VO2max for 1 hour followed by 1-hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. C2C12 myoblasts and MC3T3E1 osteoblasts were incubated with serum from each time point for 1 hour, then monitored for 24 hours (myoblasts) or 36 hours (osteoblasts) to examine proliferation. Cells were also monitored for 6 days (myoblasts) to examine myotube formation and 21 days (osteoblasts) to examine mineralization. Results: Exercise did not affect myoblast or osteoblast proliferation. Girls exhibited lower cell proliferation relative to women at end of exercise (osteoblasts, P = .041; myoblasts, P = .029) and mid-recovery (osteoblasts, P = .010). Mineralization was lower at end of recovery relative to rest (P = .014) in both girls and women. Myotube formation was not affected by exercise or group. Conclusion: The systemic environment following one acute bout of low-impact moderate-intensity exercise in girls and women does not elicit osteoblast or myoblast activity in vitro. Differences in myoblast and osteoblast proliferation between girls and women may be influenced by maturation.


2015 ◽  
Vol 308 (11) ◽  
pp. H1443-H1450 ◽  
Author(s):  
B. Bond ◽  
P. E. Gates ◽  
S. R. Jackman ◽  
L. M. Corless ◽  
C. A. Williams ◽  
...  

Acute exercise transiently improves endothelial function and protects the vasculature from the deleterious effects of a high-fat meal (HFM). We sought to identify whether this response is dependent on exercise intensity in adolescents. Twenty adolescents (10 male, 14.3 ± 0.3 yr) completed three 1-day trials: 1) rest (CON); 2) 8 × 1 min cycling at 90% peak power with 75 s recovery [high-intensity interval exercise (HIIE)]; and 3) cycling at 90% of the gas exchange threshold [moderate-intensity exercise (MIE)] 1 h before consuming a HFM (1.50 g/kg fat). Macrovascular and microvascular endothelial function was assessed before and immediately after exercise and 3 h after the HFM by flow-mediated dilation (FMD) and laser Doppler imaging [peak reactive hyperemia (PRH)]. FMD and PRH increased 1 h after HIIE [ P < 0.001, effect size (ES) = 1.20 and P = 0.048, ES = 0.56] but were unchanged after MIE. FMD and PRH were attenuated 3 h after the HFM in CON ( P < 0.001, ES = 1.78 and P = 0.02, ES = 0.59). FMD remained greater 3 h after the HFM in HIIE compared with MIE ( P < 0.001, ES = 1.47) and CON ( P < 0.001, ES = 2.54), and in MIE compared with CON ( P < 0.001, ES = 1.40). Compared with CON, PRH was greater 3 h after the HFM in HIIE ( P = 0.02, ES = 0.71) and MIE ( P = 0.02, ES = 0.84), with no differences between HIIE and MIE ( P = 0.72, ES = 0.16). Plasma triacylglycerol concentration and total antioxidant status concentration were not different between trials. We conclude that exercise intensity plays an important role in protecting the vasculature from the deleterious effects of a HFM. Performing HIIE may provide superior vascular benefits than MIE in adolescent groups.


Sign in / Sign up

Export Citation Format

Share Document