Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry

2019 ◽  
Vol 44 (11) ◽  
pp. 1254-1257
Author(s):  
Takashi Nakagata ◽  
Yosuke Yamada ◽  
Hisashi Naito

We examined the metabolic equivalents (METs) of body weight resistance exercise with slow movement in older adults using indirect calorimetry. Thirteen men and 7 women (mean age, 70.8 ± 4.8 years) participating in this study performed 4 exercises (squat, knee push-up, crunch, and heel-raise). Squat was categorized as 3.6 to 3.8 METs, whereas knee push-up, crunch, and heel-raise were categorized as 2.1 to 3.2 METs based on aerobic energy expenditure. Those values are comparable with those of younger adults.

2018 ◽  
Vol 105 (4) ◽  
pp. 371-385 ◽  
Author(s):  
T Nakagata ◽  
Y Yamada ◽  
H Naito

The benefit of body weight resistance exercise with slow movement (BWRE-slow) for muscle function is well-documented, but not for energy metabolism. We aimed to examine physiological responses [e.g., energy expenditure (EE), respiratory exchange ratio (RER), and blood lactate (La)] during and after BWRE-slow compared to EE-matched treadmill walking (TW). Eight healthy young men (23.4 ± 1.8 years old, 171.2 ± 6.2 cm, 63.0 ± 4.8 kg) performed squat, push-up, lunge, heel-raise, hip-lift, and crunch exercises with BWRE-slow modality. Both the concentric and eccentric phases were set to 3 s. A total of three sets (10 repetitions) with 30 s rest between sets were performed for each exercise (26.5 min). On another day, subjects walked on a treadmill for 26.5 min during which EE during exercise was matched to that of BWRE-slow with the researcher controlling the treadmill speed manually. The time course changes of EE and RER were measured. The EE during exercise for BWRE-slow (92.6 ± 16.0 kcal for 26.5 min) was not significantly different from the EE during exercise for TW (95.5 ± 14.1 kcal, p = 0.36). BWRE-slow elicited greater recovery EE (40.55 ± 3.88 kcal for 30 min) than TW (37.61 ± 3.19 kcal, p = 0.029). RER was significantly higher in BWRE-slow during and 0–5 min after exercise, but became significantly lower during 25–30 min after exercise, suggesting greater lipid oxidation was induced about 30 min after exercise in BWRE-slow compared to TW. We also indicated that BWRE-slow has 3.1 metabolic equivalents in average, which is categorized as moderate-intensity physical activity.


2018 ◽  
Vol 64 (Suppl.1) ◽  
pp. 116-116
Author(s):  
TAKASHI NAKAGATA ◽  
YOSUKE YAMADA ◽  
SHUICHI MACHIDA ◽  
HISASHI NAITO

2021 ◽  
pp. 1098612X2110137
Author(s):  
James R Templeman ◽  
Kylie Hogan ◽  
Alexandra Blanchard ◽  
Christopher PF Marinangeli ◽  
Alexandra Camara ◽  
...  

Objectives The objective of this study was to verify the safety of policosanol supplementation for domestic cats. The effects of raw and encapsulated policosanol were compared with positive (L-carnitine) and negative (no supplementation) controls on outcomes of complete blood count, serum biochemistry, energy expenditure, respiratory quotient and physical activity in healthy young adult cats. Methods The study was a replicated 4 × 4 complete Latin square design. Eight cats (four castrated males, four spayed females; mean age 3.0 ± 1.0 years; mean weight 4.36 ± 1.08 kg; mean body condition score 5.4 ± 1.4) were blocked by sex and body weight then randomized to treatment groups: raw policosanol (10 mg/kg body weight), encapsulated policosanol (50 mg/kg body weight), L-carnitine (200 mg/kg body weight) or no supplementation. Treatments were supplemented to a basal diet for 28 days with a 1-week washout between periods. Food was distributed equally between two offerings to ensure complete supplement consumption (first offering) and measure consumption time (second offering). Blood collection (lipid profile, complete blood count, serum biochemistry) and indirect calorimetry (energy expenditure, respiratory quotient) were conducted at days 0, 14 and 28 of each period. Activity monitors were worn 7 days prior to indirect calorimetry and blood collection. Data were analyzed using a repeated measures mixed model (SAS, v.9.4). Results Food intake and body weight were similar among treatments. There was no effect of treatment on lipid profile, serum biochemistry, activity, energy expenditure or respiratory quotient ( P >0.05); however, time to consume a second meal was greatest in cats fed raw policosanol ( P <0.05). Conclusions and relevance These data suggest that policosanol is safe for feline consumption. Further studies with cats demonstrating cardiometabolic risk factors are warranted to confirm whether policosanol therapy is an efficacious treatment for hyperlipidemia and obesity.


2020 ◽  
Vol 26 (4) ◽  
pp. 388-398
Author(s):  
Daniel Minutti de Oliveira ◽  
Ana Carolina Junqueira Vasques ◽  
Ezequiel Moreira Gonçalves ◽  
Sofia Helena Valente de Lemos-Marini ◽  
Gil Guerra-Junior ◽  
...  

Objective: To characterize resting energy expenditure (REE) in patients with classic 21-hydroxylase congenital adrenal hyperplasia (21-OH CAH) using indirect calorimetry and compare it to the most commonly used REE predictive equations. Methods: This case-control study comprised 29 post-pubertal 21-OH CAH patients regularly followed at the University of Campinas. Elevated serum 17-hydroxyprogesterone and CYP21 gene molecular analysis confirmed the diagnosis. A healthy control group paired by age, gender, and body mass index was examined. Dual-energy X-ray absorptiometry (DEXA) measured body compositions. A bioimpedance analyzer determined fat-free mass, and indirect calorimetry using a metabolic cart measured REE. Results: Unlike our initial hypothesis, REE was similar between the groups (18.7 ± 3.1 kcal/kg/day in CAH vs. 20.3 ± 3.5 kcal/kg/day in controls; P = .728). No predictive equations reached the stipulated accuracy criteria, thus lacking validity in REE assessment in adults with the characteristics of the group studied. DEXA analysis revealed higher body fat and diminished nonbone lean mass in 21-OH CAH. Anthropometric and bioelectrical impedance parameters were not significantly different. Conclusion: Classic 21-OH CAH is generally followed in reference centers, which may facilitate indirect calorimetry use for REE measurement. Alternatively, considering our REE findings in adult 21-OH CAH patients, nutrition management based on 25 kcal/body weight/day (measured REE × activity factor 1.2 to 1.3) may be reasonable for current body weight maintenance in these patients. Abbreviations: 17-OHP = 17-hydroxyprogesterone; 21-OH CAH = classic 21-hydroxylase deficiency congenital adrenal hyperplasia; BMI = body mass index; REE = resting energy expenditure; VO2 = volume of oxygen; VCO2 = volume of carbon dioxide


2014 ◽  
Vol 22 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Leslie Peacock ◽  
Allan Hewitt ◽  
David A. Rowe ◽  
Rona Sutherland

Purpose:The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults.Methods:Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials.Results:Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p < .01) on walking intensity.Conclusions:Healthy older adults achieve MVPA with stride rates that fall below published minima for MVPA. Stride rate, age, and height are significant predictors of energy expenditure in this population. Music can be a useful way to guide walking cadence.


2019 ◽  
Author(s):  
June K. Corrigan ◽  
Deepti Ramachandran ◽  
Yuchen He ◽  
Colin Palmer ◽  
Michael J. Jurczak ◽  
...  

AbstractMaintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. In humans and in laboratory mice these factors are experimentally measured by powerful and sensitive indirect calorimetry devices. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability in results. Here we examine indirect calorimetry results from two experimental mouse projects, the Mouse Metabolic Phenotyping Centers and International Mouse Phenotyping Consortium to develop insights into large-scale trends in mammalian metabolism. Analysis of nearly 10,000 wildtype mice revealed that the largest experimental variances are consequences of institutional site. This institutional effect on variation eclipsed those of housing temperature, body mass, locomotor activity, sex, or season. We do not find support for the claim that female mice have greater metabolic variation than male mice. An analysis of these factors shows a normal distribution for energy expenditure in the phenotypic analysis of 2,246 knockout strains and establishes a reference for the magnitude of metabolic changes. Using this framework, we examine knockout strains with known metabolic phenotypes. We compare these effects with common environmental challenges including age, and exercise. We further examine the distribution of metabolic phenotypes exhibited by knockout strains of genes corresponding to GWAS obesity susceptibility loci. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents, as well as how to analyze and report data from these studies. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation.


1962 ◽  
Vol 17 (3) ◽  
pp. 433-435 ◽  
Author(s):  
M. S. Malhotra ◽  
S. S. Ramaswamy ◽  
S. N. Ray

Energy expenditure in a group of 58 adult male subjects has been studied for marching, rifle drill, parade, physical training, bayonet fighting, cycling, sitting, and standing, using the method of indirect calorimetry. For all these tasks a linear relationship between energy expenditure and body weight has been established. Submitted on September 5, 1961


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2557-2566 ◽  
Author(s):  
Andreas W. Herling ◽  
Susanne Kilp ◽  
Ralf Elvert ◽  
Guido Haschke ◽  
Werner Kramer

The CB1 receptor antagonist, rimonabant, affects the endocannabinoid system and causes a sustained reduction in body weight (BW) despite the transient nature of the reduction in food intake. Therefore, in a multiple-dose study, female candy-fed Wistar rats were treated with rimonabant (10 mg/kg) and matched with pair-fed rats to distinguish between hypophagic action and hypothesized effects on energy expenditure. Within the first week of treatment, rimonabant reduced BW nearly to levels of standard rat chow-fed rats. Evaluation of energy balance (energy expenditure measured by indirect calorimetry in relation to metabolizable energy intake calculated by bomb calorimetry) revealed that increased energy expenditure based on increased fat oxidation contributed more to sustained BW reduction than reduced food intake. A mere food reduction through pair feeding did not result in comparable effects because animals reduced their energy expenditure to save energy stores. Because fat oxidation measured by indirect calorimetry increased immediately after dosing in the postprandial state, the acute effect of rimonabant on lipolysis was investigated in postprandial male rats. Rimonabant elevated free fatty acids postprandially, demonstrating an inherent pharmacological activity of rimonabant to induce lipolysis and not secondarily postabsorptively due to reduced food intake. We conclude that the weight-reducing effect of rimonabant was due to continuously elevated energy expenditure based on increased fat oxidation driven by lipolysis from fat tissue as long as fat stores were elevated. When the amount of endogenous fat stores declined, rimonabant-induced increased energy expenditure was maintained by a re-increase in food intake.


Sign in / Sign up

Export Citation Format

Share Document