Mechanisms behind the puzzle: microtubule–microfilament cross-talk in pavement cell formationThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology.

2006 ◽  
Vol 84 (4) ◽  
pp. 594-603 ◽  
Author(s):  
A.M. Kotzer ◽  
G.O. Wasteneys

Recent studies are revealing plausible mechanisms that help explain how the two major cytoskeletal systems of plant cells interact to co-ordinate morphogenesis in diffusely expanding cells. In this article, we focus on the development of pavement cells typically found in the leaf epidermis, and highlight work that provides insights into the mechanisms that generate their complex morphology. Pavement cells interdigitate with adjacent cells, forming narrow neck regions interspersed with lobe-like projections. Earlier analysis demonstrated that distinct banding of cortical microtubules and associated accumulation of cell wall material was responsible for maintaining the neck regions during expansion. More recently, it has been determined that patches of fine actin microfilaments regulate the formation of lobing regions. This zonation into microtubule-rich bands and actin patches is coordinated by the activity of Rops, small GTPases that control a wide range of signalling pathways including ones that remodel both actin microfilament and microtubule arrays. Moreover, the formation of microtubule bands and actin patches seems to be self-reinforcing. Loss of microtubule polymers by drug treatment or mutation broadens actin patch formation, apparently by enhancing Rop interactions with a positive regulator of actin polymerization. Thus, cross-talk between microtubule and actin microfilament networks is essential for coordinating and reinforcing pavement cell morphogenesis.

2017 ◽  
Vol 16 (9) ◽  
pp. 1591-1609 ◽  
Author(s):  
Tomáš Takáč ◽  
Olga Šamajová ◽  
Tibor Pechan ◽  
Ivan Luptovčiak ◽  
Jozef Šamaj
Keyword(s):  

2014 ◽  
Vol 80 (13) ◽  
pp. 3868-3878 ◽  
Author(s):  
Ana Yepes ◽  
Gudrun Koch ◽  
Andrea Waldvogel ◽  
Juan-Carlos Garcia-Betancur ◽  
Daniel Lopez

ABSTRACTProtein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial modelsEscherichia coliandBacillus subtilishave been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacteriumStaphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of theS. aureuschromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression ofmreBinS. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that inS. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the useS. aureusas a model system in exploring diverse aspects of cellular microbiology.


Blood ◽  
2012 ◽  
Vol 120 (7) ◽  
pp. 1412-1421 ◽  
Author(s):  
Alan G. Ramsay ◽  
Andrew J. Clear ◽  
Rewas Fatah ◽  
John G. Gribben

Abstract Cancer immune evasion is an emerging hallmark of disease progression. We have demonstrated previously that impaired actin polymerization at the T-cell immunologic synapse is a global immune dysfunction in chronic lymphocytic leukemia (CLL). Direct contact with tumor cells induces defective actin polarization at the synapse in previously healthy T cells, but the molecules mediating this dysfunction were not known. In the present study, we show via functional screening assays that CD200, CD270, CD274, and CD276 are coopted by CLL cells to induce impaired actin synapse formation in both allogeneic and autologous T cells. We also show that inhibitory ligand–induced impairment of T-cell actin dynamics is a common immunosuppressive strategy used by both hematologic (including lymphoma) and solid carcinoma cells. This immunosuppressive signaling targets T-cell Rho-GTPase activation. Of clinical relevance, the immunomodulatory drug lenalidomide prevented the induction of these defects by down-regulating tumor cell–inhibitory molecule expression. These results using human CLL as a model cancer establish a novel evasion mechanism whereby malignant cells exploit multiple inhibitory ligand signaling to down-regulate small GTPases and lytic synapse function in global T-cell populations. These findings should contribute to the design of immunotherapeutic strategies to reverse T-cell tolerance in cancer.


2008 ◽  
Vol 294 (1) ◽  
pp. H532-H540 ◽  
Author(s):  
Obaida R. Rana ◽  
Carsten Zobel ◽  
Esra Saygili ◽  
Klara Brixius ◽  
Felix Gramley ◽  
...  

The biomechanical environment to which cells are exposed is important to their normal growth, development, interaction, and function. Accordingly, there has been much interest in studying the role of biomechanical forces in cell biology and pathophysiology. This has led to the introduction and even commercialization of many experimental devices. Many of the early devices were limited by the heterogeneity of deformation of cells cultivated in different locations of the culture plate membranes and were also attached with complicated technical/electronic efforts resulting in a restriction of the reproducibility of these devices. The objective of this study was to design and build a simple device to allow the application of dose-dependent homogeneous equibiaxial static stretch to cells cultured on flexible silicone membranes to investigate biological and biomedical questions. In addition, cultured neonatal rat atrial cardiomyocytes were stretched with the proposed device with different strain gradients. For the first time with this study we could demonstrate that stretch up to 21% caused dose-dependent changes in biological markers such as the calcineurin activity, modulatory calcineurin-interacting protein-1, voltage-gated potassium channel isoform 4.2, and voltage-gated K+ channel-interacting proteins-2 gene expression and transient outward potassium current densities but not the protein-to-DNA ratio and atrial natriuretic peptide mRNA. With both markers mentioned last, dose-dependent stretch alterations could only be achieved with stretch up to 13%. The simple and low-cost device presented here might be applied to a wide range of experimental settings in different fields of research.


2009 ◽  
Vol 296 (3) ◽  
pp. C463-C475 ◽  
Author(s):  
Ana C. P. Thirone ◽  
Pam Speight ◽  
Matthew Zulys ◽  
Ori D. Rotstein ◽  
Katalin Szászi ◽  
...  

Hyperosmotic stress induces cytoskeleton reorganization and a net increase in cellular F-actin, but the underlying mechanisms are incompletely understood. Whereas de novo F-actin polymerization likely contributes to the actin response, the role of F-actin severing is unknown. To address this problem, we investigated whether hyperosmolarity regulates cofilin, a key actin-severing protein, the activity of which is inhibited by phosphorylation. Since the small GTPases Rho and Rac are sensitive to cell volume changes and can regulate cofilin phosphorylation, we also asked whether they might link osmostress to cofilin. Here we show that hyperosmolarity induced rapid, sustained, and reversible phosphorylation of cofilin in kidney tubular (LLC-PK1 and Madin-Darby canine kidney) cells. Hyperosmolarity-provoked cofilin phosphorylation was mediated by the Rho/Rho kinase (ROCK)/LIM kinase (LIMK) but not the Rac/PAK/LIMK pathway, because 1) dominant negative (DN) Rho and DN-ROCK but not DN-Rac and DN-PAK inhibited cofilin phosphorylation; 2) constitutively active (CA) Rho and CA-ROCK but not CA-Rac and CA-PAK induced cofilin phosphorylation; 3) hyperosmolarity induced LIMK-2 phosphorylation, and 4) inhibition of ROCK by Y-27632 suppressed the hypertonicity-triggered LIMK-2 and cofilin phosphorylation.We thenexamined whether cofilin and its phosphorylation play a role in the hypertonicity-triggered F-actin changes. Downregulation of cofilin by small interfering RNA increased the resting F-actin level and eliminated any further rise upon hypertonic treatment. Inhibition of cofilin phosphorylation by Y-27632 prevented the hyperosmolarity-provoked F-actin increase. Taken together, cofilin is necessary for maintaining the osmotic responsiveness of the cytoskeleton in tubular cells, and the Rho/ROCK/LIMK-mediated cofilin phosphorylation is a key mechanism in the hyperosmotic stress-induced F-actin increase.


Author(s):  
James Wood

Among the abdominal surgical specialities, colorectal surgery is, argu­ably, the most wide ranging. It spans a number of areas of practice each requiring many distinct knowledge bases. A large part of the speciality revolves around colorectal neoplasia which involves understanding of epidemiology, cell biology, and clinical genetics as well as appreciation of the major surgical presentations including some of the commoner abdominal emergencies, principles of surgical oncology, and pathology. Inflammatory bowel disease features a crossover area with medicine but all students of surgery need to understand the role of surgery in the context of advanced medical therapies including newer biological immu­nomodulatory treatments. On the other hand, functional pelvic floor dis­orders and diseases of the anal canal and rectum require understanding of anatomy and the wide range of local therapies available. This chapter will test all these areas from pathology to anatomy, prin­ciples of major surgery, and outpatient treatments.


Author(s):  
Rohan Abeyaratne ◽  
Prashant K. Purohit

Polymerization of dendritic actin networks underlies important mechanical processes in cell biology such as the protrusion of lamellipodia, propulsion of growth cones in dendrites of neurons, intracellular transport of organelles and pathogens, among others. The forces required for these mechanical functions have been deduced from mechano-chemical models of actin polymerization; most models are focused on single growing filaments, and only a few address polymerization of filament networks through simulations. Here, we propose a continuum model of surface growth and filament nucleation to describe polymerization of dendritic actin networks. The model describes growth and elasticity in terms of macroscopic stresses, strains and filament density rather than focusing on individual filaments. The microscopic processes underlying polymerization are subsumed into kinetic laws characterizing the change of filament density and the propagation of growing surfaces. This continuum model can predict the evolution of actin networks in disparate experiments. A key conclusion of the analysis is that existing laws relating force to polymerization speed of single filaments cannot predict the response of growing networks. Therefore, a new kinetic law, consistent with the dissipation inequality, is proposed to capture the evolution of dendritic actin networks under different loading conditions. This model may be extended to other settings involving a more complex interplay between mechanical stresses and polymerization kinetics, such as the growth of networks of microtubules, collagen filaments, intermediate filaments and carbon nanotubes.


2018 ◽  
Vol 87 (3) ◽  
Author(s):  
Lauren E. Hartley-Tassell ◽  
Milena M. Awad ◽  
Kate L. Seib ◽  
Maria Scarselli ◽  
Silvana Savino ◽  
...  

ABSTRACTClostridium difficileis a major cause of hospital-acquired antibiotic-associated diarrhea.C. difficileproduces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and β-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and β-linked galactose, including blood groups, Lewis antigens,N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissuesin vivo.


2019 ◽  
Vol 30 (15) ◽  
pp. 1781-1785 ◽  
Author(s):  
Piergiorgio Percipalle ◽  
Maria Vartiainen

The emerging role of cytoskeletal proteins in the cell nucleus has become a new frontier in cell biology. Actin and actin-binding proteins regulate chromatin and gene expression, but importantly they are beginning to be essential players in genome organization. These actin-based functions contribute to genome stability and integrity while affecting DNA replication and global transcription patterns. This is likely to occur through interactions of actin with nuclear components including nuclear lamina and subnuclear organelles. An exciting future challenge is to understand how these actin-based genome-wide mechanisms may regulate development and differentiation by interfering with the mechanical properties of the cell nucleus and how regulated actin polymerization plays a role in maintaining nuclear architecture. With a special focus on actin, here we summarize how cytoskeletal proteins operate in the nucleus and how they may be important to consolidate nuclear architecture for sustained gene expression or silencing.


2010 ◽  
Vol 191 (3) ◽  
pp. 443-452 ◽  
Author(s):  
Shannon DeMaria ◽  
John Ngai

The olfactory system detects and discriminates myriad chemical structures across a wide range of concentrations. To meet this task, the system utilizes a large family of G protein–coupled receptors—the odorant receptors—which are the chemical sensors underlying the perception of smell. Interestingly, the odorant receptors are also involved in a number of developmental decisions, including the regulation of their own expression and the patterning of the olfactory sensory neurons' synaptic connections in the brain. This review will focus on the diverse roles of the odorant receptor in the function and development of the olfactory system.


Sign in / Sign up

Export Citation Format

Share Document