Strigolactones: a new musician in the orchestra of plant hormones

Botany ◽  
2011 ◽  
Vol 89 (12) ◽  
pp. 827-840 ◽  
Author(s):  
Wouter Kohlen ◽  
Carolien Ruyter-Spira ◽  
Harro J. Bouwmeester

Strigolactones are known as germination stimulants for seeds of root parasitic plants of the Orobanchaceae and as the presymbiotic branching factor for arbuscular mycorrhizal fungi. They were also recently identified as a new class of plant hormones and have been the subject of many studies, leading to much advancement in our knowledge of how these molecules are involved in controlling plant development. In the first place, this concerns their role in the inhibition of shoot branching, but a number of studies have also revealed a role for strigolactones in shaping root system architecture or have suggested involvement of strigolactones in seed germination, hypocotyl elongation, and reproductive development. In all these studies, the interaction of strigolactones with other plant hormones such as auxin, abscisic acid, and ethylene is becoming clear. In this review we discuss the progress over the past 5 years in our understanding of the physiological role of strigolactones in the regulation of plant development.

2020 ◽  
Author(s):  
Elena Anatolyevna Dolgikh ◽  
Darya Vladimirovna Kustova

Annexins belong to the superfamily of calcium-dependent phospholipid binding proteins. The participation of these proteins in the regulation of structural organization of membranes, vesicular transport and a variety of signal transduction pathways is important for many cellular processes. Despite the structural similarity with animal annexins, plant annexins are characterized by significant variability of the N-terminal region and modification of calcium-binding motifs in II and III repeats, while calcium-binding motifs in I and IV repetitions remain conservative. However, the physiological role of animal and plant annexins, as well as mechanisms of their influence on calcium metabolism, may be similar. This review focused on the latest data about the structure and functioning of plant annexins.


Botany ◽  
2011 ◽  
Vol 89 (12) ◽  
pp. 813-826 ◽  
Author(s):  
M. Fernández-Aparicio ◽  
J.H. Westwood ◽  
D. Rubiales

A number of plant species have adapted to parasitize other plants, and some parasitic species pose severe constraints to major crops. The role of strigolactones and other metabolites present in host root exudates as germination stimulants for weedy root parasitic weed seeds has been known for the last 40 years. Recently, the ecological and developmental roles of strigolactones have been clarified by the discovery that they are a new class of plant hormone that controls shoot branching and serve as host recognition signals for mycorrhizal fungi. Parasitic plants also recognize these chemicals and use them to coordinate their life cycle with that of their host. Here we review agronomic practices that use parasitic germination stimulant production as a target for manipulation to control parasitic weeds.


2017 ◽  
Vol 69 (9) ◽  
pp. 2319-2331 ◽  
Author(s):  
Muhammad Jamil ◽  
Boubacar A Kountche ◽  
Imran Haider ◽  
Xiujie Guo ◽  
Valentine O Ntui ◽  
...  

abstract Strigolactones (SLs) are a new class of phytohormones that also act as germination stimulants for root parasitic plants, such as Striga spp., and as branching factors for symbiotic arbuscular mycorrhizal fungi. Sources for natural SLs are very limited. Hence, efficient and simple SL analogs are needed for elucidating SL-related biological processes as well as for agricultural applications. Based on the structure of the non-canonical SL methyl carlactonoate, we developed a new, easy to synthesize series of analogs, termed methyl phenlactonoates (MPs), evaluated their efficacy in exerting different SL functions, and determined their affinity for SL receptors from rice and Striga hermonthica. Most of the MPs showed considerable activity in regulating plant architecture, triggering leaf senescence, and inducing parasitic seed germination. Moreover, some MPs outperformed GR24, a widely used SL analog with a complex structure, in exerting particular SL functions, such as modulating Arabidopsis roots architecture and inhibiting rice tillering. Thus, MPs will help in elucidating the functions of SLs and are promising candidates for agricultural applications. Moreover, MPs demonstrate that slight structural modifications clearly impact the efficiency in exerting particular SL functions, indicating that structural diversity of natural SLs may mirror a functional specificity.


2010 ◽  
Vol 21 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Mónica Fernández-Aparicio ◽  
Koichi Yoneyama ◽  
Diego Rubiales

AbstractStrigolactones are apocarotenoids regulating shoot branching. They are also known to be exuded by plant roots at very low concentrations, stimulating hyphal branching of arbuscular mycorrhizal fungi and germination of root parasitic weed seeds. We show that strigolactones play a major role in host specificity ofOrobancheandPhelipanche(the broomrapes) seed germination. This observation confirms that host-derived germination stimulants are an important component determining the host specificity of these parasitic plants. Weedy broomrape species were less specialized in germination requirements than the non-weedy species except forO. cumanaandO. foetidavar.broteri. Similar results were obtained with the root exudates. Some species, such asP. aegyptiacaandO. minor, showed a broad spectrum of host specificity in terms of seed germination, which was stimulated by exudates from the majority of species tested, whereas others, such asO. cumana,O. hederaeandO. densiflora, were highly specific. Some species, such asO. minor,P. aegyptiacaandP. nana, were responsive to the three strigolactones studied, whereas others were induced by only one of them, or did not respond to them at all. The synthetic strigolactone analogue GR24, generally used as a standard for germination tests, was not effective on someOrobancheandPhelipanchespecies. Seeds of some species that did not respond to GR24 were induced to germinate in the presence of fabacyl acetate or strigol, confirming the role of strigolactones in host specificity.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer Hashem ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
A. A. Al-Huqail ◽  
M. A. Shah

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium,Bacillus subtilis(BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum;Rhizophagus intraradices; andFunneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardiiBenth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction betweenB.subtilisand AMFvis-a-visimprovement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).


2018 ◽  
Vol 156 (5) ◽  
pp. 680-688 ◽  
Author(s):  
R. Balestrini ◽  
W. Chitarra ◽  
C. Antoniou ◽  
M. Ruocco ◽  
V. Fotopoulos

AbstractDrought represents one of the major constraints on agricultural productivity and food security and in future is destined to spread widely as a consequence of climate change. Research efforts are focused on developing strategies to make crops more resilient and to mitigate the effects of stress on crop production. In this context, the use of root-associated microbial communities and chemical priming strategies able to improve plant tolerance to abiotic stresses, including drought, have attracted increasing attention in recent years. The current review offers an overview of recent research aimed at verifying the role of arbuscular mycorrhizal fungi and chemical agents to improve plant tolerance to drought and to highlight the mechanisms involved in this improvement. Attention will be devoted mainly to current knowledge on the mechanisms involved in water transport.


Sign in / Sign up

Export Citation Format

Share Document