Effect of picloram on 14CO2-fixation and translocation of 14C-assimilates in Canada thistle, soybean, and corn

1971 ◽  
Vol 49 (1) ◽  
pp. 69-74 ◽  
Author(s):  
M. P. Sharma ◽  
W. H. Vanden Born

Photosynthetic 14CO2-fixation by excised leaves of Canada thistle (Cirsium arvense (L.) Scop.) and soybean (Glycine max (L.) Merr., cultivar Harosoy 63) was reduced significantly by prior exposure of the roots of source plants to 4-amino-3,5,6-trichloropicolinic acid (picloram) at 1, 10, or 20 ppm. At 10 ppm (0.036 mM) fixation was about half of that in corresponding controls. In corn (Zea mays L., cultivar Morden 77) no inhibition occurred at 10 ppm picloram but at 20 ppm the reduction in fixation (13%) was significant. The treatments had no marked effect on 14CO2-fixation in the dark. Treatments which caused 50% or more inhibition of fixation resulted in nearly 50% reduction in labeled sucrose and alanine in the leaves. Relative amounts of labeled malic acid, aspartic acid, glutamic acid, asparagine, and serine, on the other hand, increased. Translocation of 14C-assimilates from leaves to roots in intact Canada thistle and soybean plants was inhibited if roots were treated with 1 or 10 ppm picloram for 24 h before exposure to 14CO2. Young leaves of plants so treated, especially soybeans, accumulated very little assimilated 14C compared with similar leaves in control plants. Transport of 14C-assimilates in corn plants was not significantly affected by picloram treatment. Our results suggest that the inhibitory effects of picloram on photosynthetic 14CO2-fixation and on translocation of labeled assimilates in sensitive and resistant species are indirect and are a result of disturbances of other physiological processes.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaoxia Cui ◽  
Qiang Yan ◽  
Shuping Gan ◽  
Dong Xue ◽  
Haitang Wang ◽  
...  

Abstract Background The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. Results In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. Conclusions Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 445-452
Author(s):  
Wei Jin ◽  
Harry T Horner ◽  
Reid G Palmer ◽  
Randy C Shoemaker

Abstract Oligonucleotide primers designed for conserved sequences from coding regions of β-1,3-glucanase genes from different species were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing and cross-hybridization of amplification products indicated that at least 12 classes of β-1,3-glucanase genes exist in the soybean. Members of classes mapped to 34 loci on five different linkage groups using an F2 population of 56 individuals. β-1,3-Glucanase genes are clustered onto regions of five linkage groups. Data suggest that more closely related genes are clustered together on one linkage group or on duplicated regions of linkage groups. Northern blot analyses performed on total RNA from root, stem, leaf, pod, flower bud, and hypocotyl using DNA probes for the different classes of β-1,3-glucanase genes revealed that the mRNA levels of all classes were low in young leaves. SGlu2, SGlu4, SGlu7, and SGlu12 mRNA were highly accumulated in young roots and hypocotyls. SGlu7 mRNA also accumulated in pods and flower buds.


2021 ◽  
Vol 219 ◽  
pp. 112312
Author(s):  
Yinlong Xiao ◽  
Ying Du ◽  
Yue Xiao ◽  
Xiaohong Zhang ◽  
Jun Wu ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 920
Author(s):  
Ling Cheng ◽  
Wanling Min ◽  
Man Li ◽  
Lili Zhou ◽  
Chuan-Chih Hsu ◽  
...  

Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.


1998 ◽  
Vol 22 (2) ◽  
pp. 311-317 ◽  
Author(s):  
I. F. Silva ◽  
J. Mielniczuk

Em um Latossolo Roxo de Santo Ângelo (RS), e em um Podzólico Vermelho-Escuro de Eldorado do Sul (RS), ambos com textura argilosa, submetidos o primeiro à exploração com cultivo convencional de trigo (Triticum aestivum L.) e soja (Glycine max L.) e sob setária (Setaria anceps L.), e o segundo à exploração com capim-pangola (Digitaria decumbens L.), siratro (Macroptilium atropurpureum L.), plantio direto com aveia (Avena bizantina L.)/milho (Zea mays L.) e área sem vegetação, foi realizado o presente trabalho durante a safra de verão (1990/1991), com o objetivo de avaliar a estabilidade e a agregação do solo sob diferentes sistemas de cultivo. Constatou-se, nessa avaliação, que as gramíneas perenes por meio do seu sistema radicular tiveram grande efeito na agregação e estabilidade dos agregados do solo e que os teores de carbono orgânico, de ferro e alumínio-oxalato, argila e grau de dispersão tiveram também efeitos na agregação do solo, porém insuficientes para explicar as variações entre o diâmetro médio ponderado dos agregados sob os diferentes sistemas de cultivo.


Author(s):  
Min Zhao ◽  
Han Xiao ◽  
Dong Sun ◽  
Shunshan Duan

The presence of harmful algal blooms (HABs) can cause significant problems to the quality of the water, the marine ecosystems, and the human health, and economy worldwide. Biological remediation can inhibit harmful algal growth efficiently in an environmental-friendly manner. Therefore, the research conducted on biological remediation with regard to the inhibition of HABs is becoming a major focus in marine ecology. To date, no study has been reported with regard to the red tides occurring in mangrove wetlands. Therefore, the present study used two mangrove species, namely Bruguiera gymnorrhiza and Kandelia candel and one harmful algae species Phaeocystis globosa as experimental organisms. The present study determined the inhibitory effects and algae physiology of specific aqueous extracts from mangrove leaves on the viability of harmful algae, and analyzed the main chemical composition of the aqueous extracts by ultra-performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-QTOF-MS). The results indicated that the aqueous extracts from different leaf ages of B. gymnorrhiza and K. candel leaves exhibited apparent inhibitory effects on the growth of P. globosa. The inhibitory effects of B. gymnorrhiza and K. candel leaves aqueous extracts on the growth of P. globosa were in the following order: senescent > mature > young leaves. The levels of the parameters superoxide dismutase (SOD) activity, glutathione (GSH), and malondialdehyde (MDA)content in P. globosa following treatment with B. gymnorrhiza and K. candel leaves aqueous extracts were increased as follows: senescent > mature > young leaves. Simultaneously, the intensity of the ion peaks of the specific secondary metabolites assigned 4 (No.: 4 Rt: 2.83 min), 7 (No.: 7 Rt: 3.14 min), 8 (No.: 8 Rt: 3.24 min), 9 (No.: 9 Rt: 3.82min) and 10 (No.: 10 Rt: 4.10 min) were increased. These metabolites were found in the aqueous extracts from B. gymnorrhiza leaves. The intensities of the ion peaks of the secondary metabolites 7, 8 in the aqueous extracts from the K. candel leaves were also increased. The majority of the substances that inhibited the algae found in the mangrove plants were secondary metabolites. Therefore, we considered that the norsesquiterpenes compounds 4, 8, 9, and 10 and a phenolic glycoside compound 7 were the active constituents in the aqueous extracts of the mangrove leaves responsible for the inhibition of algae growth. This evidence provided theoretical guidance for the development of biological methods to control red tides and for the further use of substances with antiproliferative activity against algae.


1998 ◽  
Vol 28 (2) ◽  
pp. 199-204
Author(s):  
Deny Alves Alvarenga ◽  
Pedro Milanez de Rezende ◽  
Messias José Bastos de Andrade ◽  
Luiz Antônio de Bastos Andrade

O presente trabalho foi realizado com o objetivo de avaliar o comportamento da soja [ Glycine max (L.) Merrill ] cultivar Doko e do milho (Zea mays L.) cultivar BR 201 quando consorciados em diferentes sistemas de semeadura. O experimento foi conduzido no ano agrícola 1992/1993. em área experimental da Universidade Federal de Lavras, em Latossolo roxo distrófico, textura argilosa. O delineamento experimental utilizado foi blocos casualizados, com três repetições em esquema fatorial (3x3+4) constituído por três sistemas de consórcio (soja na linha do milho; soja na entrelinha do milho e soja em ambas linha e entrelinha) e três formas de semeadura do milho uma planta a cada 25cm, duas plantas e cada 50cm e quatro plantas a cada 100cm e mais 4 tratamentos adicionais representados pelos monocultivos das três formas de semeadura do milho e a da soja. A cultura do milho não foi influenciada pelos sistemas de semeadura empregados e nem pela presença da cultura da soja em consórcio. A soja consorciada em relação ao monocultivo apresentou maior acamamento e menor rendimento de grãos. Entre os sistemas de consórcio, a semeadura simultânea de soja nas linhas e entrelinhas do milho foi o que proporcionou o maior rendimento de grãos. A eficiência dos sistemas consorciadas sobre o monocultivo foi evidenciado com valor médio da razão de área equivalente (RAE) de 1,40.


Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 93 ◽  
Author(s):  
Hongjie Zhang ◽  
R. Paul Voroney ◽  
G. W. Price ◽  
Andrew J. White

Hydrogen sulfide (H2S) is a highly toxic and corrosive contaminant gas co-generated during anaerobic digestion. Studies have shown that biochars have the potential to adsorb H2S and to promote its oxidisation. To date, no studies have investigated the bioavailabilty to plants of the sulfur (S) contained in biochar when used as an S fertiliser. Biochar was packed into the biogas emissions stream to adsorb the H2S being generated. The resulting sulfur-enriched biochar (SulfaChar) and synthetic S fertiliser (control treatment) were amended to potting soils and the growth response of corn (Zea mays L.) and soybeans [Glycine max (L.) Merr.] and nutrient uptake were measured after a 90-day greenhouse study. SulfaChar contained 36.5% S (S element and SO42–), confirming it adsorbed significant amounts of H2S. Compared with the control treatment, SulfaChar amendment significantly increased corn plant biomass, ranging from 31% to 49% but only a slight increase in soybean biomass (4 to 14%). SulfaChar also increased corn plant uptake of S and other macro- (N, P, K, Ca, and Mg) and micro-nutrients (Zn, Mn and B). Our results show that SulfaChar was a source of plant available S, suggesting that SulfaChar is either a supplier of these nutrients or that it promoted their uptake.


2001 ◽  
Vol 36 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Francisco Jorge Cividanes ◽  
José Carlos Barbosa

Procurou-se avaliar os efeitos do plantio direto e da consorciação soja (Glycine max (L.) Merrill) e milho (Zea mays L.) sobre pragas e inimigos naturais. Os tratamentos constituíram um fatorial 3 x 2 (monocultura de soja, monocultura de milho, consorciação soja-milho x plantio direto, plantio convencional), em blocos casualizados. Os insetos foram amostrados pelo método do pano, rede entomológica, procura visual e armadilha de sucção. Entre os insetos-pragas do milho, Maecolaspis assimilis ocorreu em maior número no sistema de plantio convencional; o mesmo ocorreu com os predadores Cycloneda sanguinea e Doru sp. Por outro lado, M. assimilis e o predador Toxomerus sp. foram mais numerosos na monocultura de milho em relação à cultura do milho consorciado com soja. Dos insetos-pragas da soja, destacaram-se pelo maior número Anticarsia gemmatalis e Diabrotica gracilenta, no sistema de plantio convencional, e o mesmo aconteceu com a espécie da família Trichogrammatidae, enquanto as espécies da família Eulophidae foram mais numerosas na soja sob sistema de plantio direto. Na soja consorciada com milho foi maior o número de insetos-pragas Megalotomus sp. e Maecolaspis sp. e dos inimigos naturais Geocoris sp., Lebia concina, Orius sp., Braconidae e Scelionidae.


2021 ◽  
Vol 8 (4) ◽  
pp. 735
Author(s):  
Ana Ecidia de Araújo Brito ◽  
Jessica Suellen Silva Teixeira ◽  
Diana Jhulia Palheta de Sousa ◽  
Evelyn Fátima Lima de Souza ◽  
Gabriel Ito dos Santos Teixeira ◽  
...  

The aim of this work was to evaluate the attenuating effect of the nitric oxide donor (sodium nitroprusside-NPS) on the ecophysiological responses of corn plants (Zea mays L.) submitted to copper toxicity. The corn seeds of the K9606 VIP3 variety were soaked for 48 hours in Germitest with solution containing treatment with sodium nitroprusside Na2 [Fe (CN) 5 NO] 2H2O (0, 200 and 300µM), sodium ferrocyanide Na4Fe (CN) 6 ( 300, 100 and 0 µM) respectively and deionized water (control), sown in buckets with 15 kg of soil incubated for 50 days containing copper concentrations CuSO4.5H2O (0, 60 and 200 mg kg-1). The design consisted of randomized blocks with 12 treatments and 4 repetitions, making a total of 48 plants. in ecophysiological variables: height, leaf area and number of leaves, stem diameter increased by 32, 66% and 11.29% in the treatments with 60 mg kg-1 of copper and 200 mg kg-1 of copper, respectively. There was no effect of treatments on the chlorophyll content measured by the SPAD index and gas exchange. The chlorophyll a fluorescence variables indicate that the concentration of 200 mg kg-1 of copper caused damage to the structure of the PS II reaction center complexes and indicate a slightly protective effect of nitric oxide-NO present in sodium nitroprusside and cyanide present in sodium ferrocyanide, reflecting a smooth functioning of the maximum activity of photosystem II and the electron transport chain.


Sign in / Sign up

Export Citation Format

Share Document