scholarly journals GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaoxia Cui ◽  
Qiang Yan ◽  
Shuping Gan ◽  
Dong Xue ◽  
Haitang Wang ◽  
...  

Abstract Background The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. Results In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. Conclusions Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.

1971 ◽  
Vol 49 (1) ◽  
pp. 69-74 ◽  
Author(s):  
M. P. Sharma ◽  
W. H. Vanden Born

Photosynthetic 14CO2-fixation by excised leaves of Canada thistle (Cirsium arvense (L.) Scop.) and soybean (Glycine max (L.) Merr., cultivar Harosoy 63) was reduced significantly by prior exposure of the roots of source plants to 4-amino-3,5,6-trichloropicolinic acid (picloram) at 1, 10, or 20 ppm. At 10 ppm (0.036 mM) fixation was about half of that in corresponding controls. In corn (Zea mays L., cultivar Morden 77) no inhibition occurred at 10 ppm picloram but at 20 ppm the reduction in fixation (13%) was significant. The treatments had no marked effect on 14CO2-fixation in the dark. Treatments which caused 50% or more inhibition of fixation resulted in nearly 50% reduction in labeled sucrose and alanine in the leaves. Relative amounts of labeled malic acid, aspartic acid, glutamic acid, asparagine, and serine, on the other hand, increased. Translocation of 14C-assimilates from leaves to roots in intact Canada thistle and soybean plants was inhibited if roots were treated with 1 or 10 ppm picloram for 24 h before exposure to 14CO2. Young leaves of plants so treated, especially soybeans, accumulated very little assimilated 14C compared with similar leaves in control plants. Transport of 14C-assimilates in corn plants was not significantly affected by picloram treatment. Our results suggest that the inhibitory effects of picloram on photosynthetic 14CO2-fixation and on translocation of labeled assimilates in sensitive and resistant species are indirect and are a result of disturbances of other physiological processes.


2019 ◽  
Vol 46 (4) ◽  
pp. 304 ◽  
Author(s):  
Xi Chen ◽  
Xin Fang ◽  
Youyi Zhang ◽  
Xin Wang ◽  
Chuanzhong Zhang ◽  
...  

Phytophthora root and stem rot of soybean (Glycine max (L.) Merr.) caused by Phytophthora sojae is a destructive disease worldwide. The enzyme 4-coumarate: CoA ligase (4CL) has been extensively studied with regard to plant responses to pathogens. However, the molecular mechanism of the response of soybean 4CL to P. sojae remains unclear. In a previous study, a highly upregulated 4CL homologue was characterised through suppressive subtractive hybridisation library and cDNA microarrays, in the resistant soybean cultivar ‘Suinong 10’ after infection with P. sojae race 1. Here, we isolated the full-length EST, and designated as GmPI4L (P. sojae-inducible 4CL gene) in this study, which is a novel member of the soybean 4CL gene family. GmPI4L has 34–43% over all amino acid sequence identity with other plant 4CLs. Overexpression of GmPI4L enhances resistance to P. sojae in transgenic soybean plants. The GmPI4L is located in the cell membrane when transiently expressed in Arabidopsis protoplasts. Further analyses showed that the contents of daidzein, genistein, and the relative content of glyceollins are significantly increased in overexpression GmPI4L soybeans. Taken together, these results suggested that GmPI4L plays an important role in response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, and genistein in soybean.


2021 ◽  
Vol 219 ◽  
pp. 112312
Author(s):  
Yinlong Xiao ◽  
Ying Du ◽  
Yue Xiao ◽  
Xiaohong Zhang ◽  
Jun Wu ◽  
...  

2014 ◽  
Vol 955-959 ◽  
pp. 419-422
Author(s):  
Gui Lin Liu ◽  
Yan Ping Ding ◽  
Yan Ling Wu ◽  
Wen Zhang

Telomeric DNA of human chromosomes plays a significant role in physiological processes such as cell cycle, aging, cancer and genetic stability due to its special sequence and structure. The research on small molecule ligands targeting G-quadruplex formed by such special sequence has attracted considerable attention, and has achieved great breakthrough. In this paper, we summarize the DNA sequences and structures of three kinds of typical human telomeric G-quadruplex, providing an important reference for further research.


2021 ◽  
Vol 22 (2) ◽  
pp. 920
Author(s):  
Ling Cheng ◽  
Wanling Min ◽  
Man Li ◽  
Lili Zhou ◽  
Chuan-Chih Hsu ◽  
...  

Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.


2018 ◽  
Vol 96 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Chenggui Miao ◽  
Guoxue Zhang ◽  
Zhongwen Xie ◽  
Jun Chang

miRNA is a short non-coding RNA that can influence mRNA processing at the post-transcriptional level. A large number of miRNAs have been found in virtually all species so far, and these small molecules play an important role in many different physiological processes and various pathologic conditions, such as cell metabolism, cancer, autoimmune disease, and diabetes mellitus. T2D arises from a dysregulated response to the elevated glucose level in the circulation. The prevalence of T2D has increased dramatically in all age groups, and T2D in older adults is associated with more T2D complications and higher mortality. Despite the existing findings describing the pathological mechanism, T2D pathology is more complex and the pathophysiology of the disease is still not fully elucidated. In this review, we summarize the current understanding of miRNA-mediated modulation of gene expression in T2D pathogenesis, as well as related signaling pathways, and insight into the important role of miRNA in various T2D complications. Furthermore, the potential therapeutic value of miRNA for T2D patients is also discussed in detail.


2004 ◽  
Vol 17 (10) ◽  
pp. 1051-1062 ◽  
Author(s):  
Pat Moy ◽  
Dinah Qutob ◽  
B. Patrick Chapman ◽  
Ian Atkinson ◽  
Mark Gijzen

To investigate patterns of gene expression in soybean (Glycine max) and Phytophthora sojae during an infection time course, we constructed a 4,896-gene microarray of host and pathogen cDNA transcripts. Analysis of rRNA from soybean and P. sojae was used to estimate the ratio of host and pathogen RNA present in mixed samples. Large changes in this ratio occurred between 12 and 24 h after infection, reflecting the rapid growth and proliferation of the pathogen within host tissues. From the microarray analysis, soybean genes that were identified as strongly upregulated during infection included those encoding enzymes of phytoalexin biosynthesis and defense and pathogenesis-related proteins. Expression of these genes generally peaked at 24 h after infection. Selected lipoxygenases and peroxidases were among the most strongly downregulated soybean genes during the course of infection. The number of pathogen genes expressed during infection reached a maximum at 24 h. The results show that it is possible to use a single microarray to simultaneously probe gene expression in two interacting organisms. The patterns of gene expression we observed in soybean and P. sojae support the hypothesis that the pathogen transits from biotrophy to necrotrophy between 12 and 24 h after infection.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 449-449 ◽  
Author(s):  
J. E. Kurle ◽  
S. L. Gould ◽  
S. M. Lewandowski ◽  
S. Li ◽  
X. B. Yang

In August 2002, soybean (Glycine max (L.) Merr.) plants exhibiting foliar and root symptoms typical of sudden death syndrome were observed in Blue Earth and Steele counties in south-central Minnesota. Leaf symptoms ranging from small chlorotic spots to prominent interveinal necrosis were present on soybean plants at the R6 to R7 growth stage. As plants matured, complete defoliation took place with only petioles remaining. Symptomatic plants had necrotic secondary roots, truncated taproots, and discolored cortical tissue at the soil line. Blue sporodochia containing macroconidia were observed on the taproot of affected plants at both locations (3,4). Multiple cultures from both locations were obtained by transferring macroconidia from the sporodochia to potato dextrose agar (PDA) and modified Nash-Snyder Medium (NSM) (3). After 14 days, isolations were made from fungal colonies exhibiting bluish pigmentation and masses of bluish macroconidia (4). The isolates grew slowly, developed a bluish color, and formed sporodochia containing abundant macroconidia on NSM. These isolates were identified as Fusarium solani (Mart.) Sacc. f. sp. glycines based on colony characteristics and morphology of macroconidia (2). Pathogenicity tests were conducted with a single isolate from each location. The isolate from Blue Earth County was inoculated as mycelia in a plug of media onto taproots of plants of susceptible cvs. Williams 82 and Spencer at the V2 growth stage. Chlorotic spots appeared on leaves after 12 days of growth at 22 to 25°C in the greenhouse. Interveinal necrosis appeared after 15 days (4). The isolate from Steele County was used to inoculate the susceptible cv. Great Lakes 3202. Sorghum seed (3 cm3) infested with mycelia of the isolate were placed 2 to 3 cm below soybean seed planted in Cone-Tainers. Noninfested sorghum seed was used as a control. Plants were maintained for 21 days at 22 to 28°C in the greenhouse. Chlorotic spots appeared on leaves of inoculated plants within 21 days after planting followed by the development of interveinal chlorosis and necrosis (1). Molecular analysis further supported the identification of the Steele County isolate as F. solani f. sp. glycines. Polymerase chain reaction with specific primers Fsg1 and Fsg2 of total genomic DNA extracted from the Steele County isolate amplified a 438-bp DNA fragment identical with that extracted from previously identified isolates of F. solani f. sp. glycines (1). In 2002, symptoms of sudden death syndrome were also reported in Olmsted, Freeborn, and Mower counties. Although studies are needed to determine the distribution of sudden death syndrome in the state, the occurrence of the symptoms at multiple locations suggests that F. solani f. sp. glycines is widely distributed in southeast and south-central Minnesota. The counties where sudden death syndrome symptoms were reported are located in the most productive soybean-growing region of Minnesota. Sudden death syndrome could be a serious threat to soybean production in this area since poorly drained, heavy, clay soils are common, and soil temperatures 18°C or less are normal before the end of May. References: (1) S. Li et al. Phytopathology 90:491, 2000. (2) K. W. Roy. Plant Dis. 81:566, 1997. (3) K. W. Roy et al. Plant Dis. 81:1100, 1997. (4) K. W. Roy. Plant Dis. 81:259, 1997.


2014 ◽  
Vol 7 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Bruno Henrique Sardinha de Souza ◽  
Eduardo Neves Costa ◽  
Anderson Gonçalves da Silva ◽  
Arlindo Leal Boiça Júnior

A soja, Glycine max (L.) Merril, é uma das culturas de maior importância econômica para o Brasil, considerada uma commodity nacional devido à sua alta produtividade e participação nas exportações no mercado internacional. Dentre os insetos-pragas que causam danos para essa cultura, nos últimos anos agrícolas têm merecido destaque as lagartas de Spodoptera eridania (Cramer), as quais podem se alimentar tanto de folhas quanto das vagens das plantas de soja, causando prejuízos econômicos para os sojicultores, principalmente nas áreas do Cerrado localizadas na região Centro-Oeste do país. O objetivo da presente revisão é disponibilizar informações sobre os aspectos bionômicos de S. eridania, a fim de dar subsídios para futuras pesquisas sobre o manejo dessa praga.Bionomic Aspects of Spodoptera eridania (Cramer): A Pest in Expansion on Soybean Crop in the Region of Brazilian CerradoAbstract. Soybean, Glycine max (L.) Merril, represents one of the major economically important crops to Brazil, and is considered a national commodity because of its high yield and participation in international trade exportations. Among the insect pests that cause damage to this crop, Spodoptera eridania (Cramer) larvae highlighted in the last agricultural seasons by feeding on leaves and pods of soybean plants, and hence causing economical losses to soybean growers, especially in the Cerrado areas located in the Midwest region of the country. We aimed with this review to provide information about bionomical aspects of S. eridania in order to give subsides for further researches on the management of this pest.


Sign in / Sign up

Export Citation Format

Share Document