Investigations of growth-promoting factors in conditioned soybean root cells and in the liquid medium in which they grow: ammonium, glutamine, and amino acids

1974 ◽  
Vol 52 (7) ◽  
pp. 1747-1755 ◽  
Author(s):  
P. A. Sargent ◽  
J. King

Cells cultured in sterile, liquid media from a number of Phaseolus spp., soybean cotyledons, shoots, and roots and from rice explants grew, in terms of dry-weight increase, much better in the presence of NH4+ and NO3− as sources of nitrogen than with NO3− alone. Other cultures tested, including other legumes, either did not respond positively to added NH4+ or, as in the case of Haplopappus gracilis cells, grew better in its absence.Earlier it had been shown that soybean (Glycine max. L. cv. Mandarin) root cells grew better in the presence of NH4+ than in its absence and that 'conditioning' substances were produced by cells and excreted into the medium between about the 15th and 35th h of incubation. These observations and those above with other cell cultures led to the initiation of an investigation of why some cells respond to NH4+ while others do not.This investigation has so far taken the form of an analysis of nitrogenous compounds in soybean root cells and in the NH4+-containing medium in which they were grown during 120 h of incubation and especially after 24 h of incubation, the time of maximum production of growth-enhancing ability in both cells and medium.Growth enhancement can be accounted for, apparently, by the occurrence of residual NH4+ in conditioned medium and by the presumed occurrence of NH4+ in cells. However, glutamine and its derivatives are implicated in the conditioning process.


1975 ◽  
Vol 53 (18) ◽  
pp. 2088-2091 ◽  
Author(s):  
J. King ◽  
Rozina Hirji

The uptake of 1 μM14C-labelled arginine, glutamate, and alanine by cultured soybean (Glycine max L. cv. Mandarin) root cells was followed for periods up to 4 min at pH 5.5 in the presence of a 10 μM concentration of other amino compounds. From the degree of competition between 14C-labelled and unlabelled amino acids a number of uptake systems for basic, acidic, and neutral amino acids were identified, and a number of problems associated with amino acid transport in soybean cells were uncovered.



1974 ◽  
Vol 52 (12) ◽  
pp. 2459-2463 ◽  
Author(s):  
P. A. Sargent ◽  
J. King

By using the soybean cotyledon callus bioassay for cytokinin-like compounds and two methods of extraction of cytokinins from plant tissues, the presence of growth-active compounds of a purine nature has been detected in soybean (Glycine max. L. cv. Mandarin) root cell suspension cultures growing in a medium containing NH4+. These compounds can be added to residual NH4+, glutamine, and an adequate supply of amino acids as conditioning substances in these cultures.



CYTOLOGIA ◽  
1975 ◽  
Vol 40 (2) ◽  
pp. 347-354 ◽  
Author(s):  
B. D. Singh ◽  
B. L. Harvey


1968 ◽  
Vol 14 (11) ◽  
pp. 1253-1258 ◽  
Author(s):  
V. P. Agnihotri

The effects of different nitrogen sources on growth and sclerotial production by Aspergillus niger were determined on a synthetic agar medium. The organism used inorganic, organic, and ammonium nitrogen for growth and sclerotial production. Among the ammonium compounds tested, the chloride, phosphate, sulfate, and carbonate were used poorly, but the nitrate was well utilized. Addition of organic acids to ammonium compounds increased sclerotial production. Raising the concentration of sodium nitrate to a certain level (0.15%) increased the number of sclerotial initials and the number and weight of those which matured. Sodium nitrite curtailed mycelial growth and prevented production of sclerotia. Utilization of nitrite was accelerated by adjusting the pH on the alkaline side from 7.5 to 9.0. Urea supported poor sclerotial production; thiourea inhibited it. Of the amino acids, histidine yielded the most and arginine the least number of sclerotia. In lysine medium, the white cottony sclerotial initials remained fluffy even after 20 days. Sclerotial production decreased significantly when proline, glutamic acid, or leucine were omitted from the basal medium containing 10 amino acids. In general, no correlation existed between the number of sclerotia formed and the dry weight they attained on different nitrogen sources. With certain nitrogen sources sclerotial initials failed to mature.



Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.



2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.



AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramona Wördemann ◽  
Lars Wiefel ◽  
Volker F. Wendisch ◽  
Alexander Steinbüchel

AbstractCyanophycin (multi-l-arginyl-poly-l-aspartic acid; also known as cyanophycin grana peptide [CGP]) is a biopolymer that could be used in various fields, for example, as a potential precursor for the synthesis of polyaspartic acid or for the production of CGP-derived dipeptides. To extend the applications of this polymer, it is therefore of interest to synthesize CGP with different compositions. A recent re-evaluation of the CGP synthesis in C. glutamicum has shown that C. glutamicum is a potentially interesting microorganism for CGP synthesis with a high content of alternative amino acids. This study shows that the amount of alternative amino acids can be increased by using mutants of C. glutamicum with altered amino acid biosynthesis. With the DM1729 mutant, the lysine content in the polymer could be increased up to 33.5 mol%. Furthermore, an ornithine content of up to 12.6 mol% was achieved with ORN2(Pgdh4). How much water-soluble or insoluble CGP is synthesized is strongly related to the used cyanophycin synthetase. CphADh synthesizes soluble CGP exclusively. However, soluble CGP could also be isolated from cells expressing CphA6308Δ1 or CphA6308Δ1_C595S in addition to insoluble CGP in all examined strains. The point mutation in CphA6308Δ1_C595S partially resulted in a higher lysine content. In addition, the CGP content could be increased to 36% of the cell dry weight under optimizing growth conditions in C. glutamicum ATCC13032. All known alternative major amino acids for CGP synthesis (lysine, ornithine, citrulline, and glutamic acid) could be incorporated into CGP in C. glutamicum.





2021 ◽  
Vol 22 (10) ◽  
pp. 5162
Author(s):  
Leangsrun Chea ◽  
Birgit Pfeiffer ◽  
Dominik Schneider ◽  
Rolf Daniel ◽  
Elke Pawelzik ◽  
...  

Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass 60–80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50–80% and organic acids by 20–90%, but increased amino acids by 1.5–14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32–45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.



Sign in / Sign up

Export Citation Format

Share Document