Light and electron microscope studies on cell wall breakdown in American elm xylem tissues infected with Dutch elm disease

1978 ◽  
Vol 56 (21) ◽  
pp. 2666-2693 ◽  
Author(s):  
G. B. Ouellette

Seven years (1970–1977) of comparative light and electron microscope studies show that extensive cell wall disruption and breakdown occur consistently in elm xylem tissues infected by Ceratocystis ulmi (Buism.) C. Moreau. These alterations, noticeable even in incipient infection, can be related to the severity of wilting development and occur in association with the presence of an unbound osmiophilic material containing fine fibrillar material, dense particles of approximately 15 nm, and multilamellate structures. Masses of unbound osmiophilic material in host walls and walled fungal cells with which it is sometimes continuous are highly and exclusively labeled following injection of [6-3H]thymidine.The presence of osmiophilic material in host walls and the interrelation between the two was further established by examining stereoscopic pairs of prints taken at various angles with a goniometer. This type of cell wall breakdown seems difficult to relate to other known types of wood rots. Further discussion on the possible nature and origin of the osmiophilic material is presented.

1983 ◽  
Vol 61 (4) ◽  
pp. 1266-1275 ◽  
Author(s):  
Susette C. Mueller ◽  
Gordon A. Maclachlan

Radioautographic experiments were carried out using pea stem slices to determine the site of glucose incorporation from UDP-glucose. Cut or damaged pea stem cells were the only cells to incorporate [3H]glucose from UDP-[3H]glucose. The product formed at 20 μM UDP-glucose was observed in electron microscope thin sections in patches on the plasma membrane and the cell wall. The product formed at 5 mM UDP-glucose occurred in fibrillar bundles that stretched between the plasma membrane and the cell wall. This periplasmic material fluoresced when stained with aniline blue. Experiments in which slices were subjected to sequential incubations in radioactive 5 mM UDP-glucose followed by unlabelled 5 mM UDP-glucose, or incubations in the reverse order, indicated that incorporation of [3H]glucose into products insoluble in chloroform:methanol:water or hot water occurs at the plasma membrane, and radioactivity is displaced from the membrane by subsequent incubations. A similar experiment, in which slices were first incubated in radioactive 20 μM UDP-glucose followed by unlabelled 5 mM UDP-glucose, indicated that the synthesis of fibrillar material from 5 mM UDP-glucose displaces the labelled product that had been formed from 20 μM UDP-glucose. It is concluded that only cut or damaged pea stem cells utilize UDP-glucose and the plasma membrane enzymes that incorporate [3H]glucose from 20 μM or 5 mM UDP-[3H]glucose are in close physical proximity.


1978 ◽  
Vol 56 (20) ◽  
pp. 2550-2566 ◽  
Author(s):  
G. B. Ouellette

Plugging of certain vessels may occur in elm shortly after inoculation with the Dutch elm disease pathogen, Ceratocystis ulmi (Buism.) C. Moreau. Plugging components include fibrillar material of varying density and fungal cells traceable mostly to inoculated spores. Some material is similar to fungal cell contents, and indications of extrusion of the latter through ruptured or unruptured walls were obtained. Other material is also attributable to disintegrating fungal walls. Radioautographs obtained from samples treated with [6-3H]thymidine indicate significant labeling of fungal cell contents and of similar material, free.Similar fibrillar material, some labeled, is present within pit membranes, in adjacent parenchyma cell walls, and in periplasmic areas associated with retraction of the plasmalemma and with other cytoplasmic disturbances. Host vessel walls are also altered in the presence of some fibrillar material but apparently release only limited amounts of disintegration products into vessels.The possible implications of these observations are discussed in relation to current hypotheses on wilt diseases.


1981 ◽  
Vol 59 (12) ◽  
pp. 2425-2438 ◽  
Author(s):  
G. B. Ouellette

Various ultrastructural cell wall modifications of fibres have been observed in artificially or naturally infected American elm (Ulmus americana L.) trees surviving the acute stage of the Dutch elm disease caused by Ceratocystis ulmi (Buism.) C. Moreau. Bands of fibres with gelatinous (SG) layers characteristic of tension wood are frequent in or near invaded tissues; similar layers are also present sometimes in cells identifiable as parenchyma. The SG layer is often different from that observed in healthy trees. Masses or bands of dense material are present which often extend perpendicular as tubular structures to the plasmalemma location. Also, orientation of fibrils in such layers may be disordinate. One or more additional lignified-like layers alternating with additional SG-like or other opaque layers may occur inside the first SG layer. The innermost layer in these cases is often lamellate.Small intracellular locules delimited by one or two wall layers also occur in other cells.The possible significance of these observations in host–parasite relationships of the disease is briefly discussed.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
B. L. Redmond ◽  
Christopher F. Bob

The American Elm (Ulmus americana L.) has been plagued by Dutch Elm Disease (DED), a lethal disease caused by the fungus Ceratocystis ulmi (Buisman) c. Moreau. Since its initial appearance in North America around 1930, DED has wrought inexorable devastation on the American elm population, triggering both environmental and economic losses. In response to the havoc caused by the disease, many attempts have been made to hybridize U. americana with a few ornamentally less desirable, though highly DED resistant, Asian species (mainly the Siberian elm, Ulmus pumila L., and the Chinese elm Ulmus parvifolia Jacq.). The goal is to develop, through breeding efforts, hybrid progeny that display the ornamentally desirable characteristics of U. americana with the disease resistance of the Asian species. Unfortunately, however, all attempts to hybridize U. americana have been prevented by incompatibility. Only through a firm understanding of both compatibility and incompatibility will it be possible to circumvent the incompatibility and hence achieve hybridization.


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


1986 ◽  
Vol 64 (4) ◽  
pp. 875-884 ◽  
Author(s):  
Patricia Schulz ◽  
William A. Jensen

Ovules of Capsella bursa-pastoris at the dyad and tetrad stages of meiosis and at the megaspore and two-nucleate stages of the gametophyte were studied with the electron microscope. The cells of the dyad and tetrad are separated by aniline blue fluorescent cross walls and receive all types of organelles and autophagic vacuoles that were present in the meiocyte. Autophagic vacuoles enclose ribosomes and organelles and show reaction product for acid phosphatase. Autophagic vacuoles and some plastids are absorbed into the enlarging vacuoles of the growing megaspore. Other plastids appear to survive meiosis and there is no evidence for their de novo origin. Some mitochondria appear to degenerate in the enlarging megaspore but others look healthy and there is no evidence for the de novo origin of mitochondria. The nucleolus of the developing megaspore becomes very large and the cytoplasm is extremely dense with ribosomes. The cell wall is thickened by an electron-translucent, periodic acid – Schiff negative, aniline blue fluorescent material and contains plasmodesmata that link the megaspore with the nucellus. The plasmalemma of the growing megaspore produces microvilluslike extensions into this wall that disappear with the formation of the two-nucleate gametophyte. Plasmodesmata disappear from the cell wall at the four-nucleate stage.


1972 ◽  
Vol 18 (1) ◽  
pp. 93-96 ◽  
Author(s):  
S. E. Read ◽  
R. W. Reed

The replicative events of a virulent phage (A25) infection of a group A Streptococcus (T253) were studied using the electron microscope. The first intracellular evidence of phage replication in a cell occurred 30 min after infection with arrest of cell division and increase in the nucleic acid pool. Phage heads were evident in the nucleic acid pool of the cells 45 min after infection. Release of phages occurred by splitting of the cell wall along discrete lines. This appeared to be at sites of active wall synthesis, i.e., near the region of septum formation. Many phage components were released but relatively few complete phages indicating a relatively inefficient replicative system.


1970 ◽  
Vol 6 (2) ◽  
pp. 299-321
Author(s):  
K. ROBERTS ◽  
D. H. NORTHCOTE

Sycamore suspension callus cells have been partially synchronized to give a culture with a mitotic index of 15%. Living dividing cells of the culture have been examined with Nomarski differential interference optics and a comparable study made on fixed cells with the electron microscope. An organized band of reticulate cytoplasm partially encircles the nucleus at mitosis. The cell divides by the formation of a phragmosome which grows across the large vacuole; this allows the organization of the cytoplasm which forms the cell plate to be examined separately from the more general cytoplasm of the cell. The cell plate grows from one side of the cell to the other and down its length a complete developmental sequence can be seen. The Golgi bodies and the endoplasmic reticulum are probably involved in the formation of material for the construction of the cell plate and young cell wall. Microfibrils are formed within the plate in the more mature regions, while material contained within vesicles is incorporated at the young growing edge. At the edge of the plate microtubules are found and these correspond to the fibrillar appearance of the phragmoplast seen with the optical microscope. In the living cell an active movement of organelles along the peripheral cytoplasm can be seen and with fixed cells viewed with the electron microscope microtubules are often found adjacent to the plasmalemma and lying close to mitochondria, crystal-containing bodies and plastids. The appearance of crystal-containing bodies and plastids containing phytoferritin is described.


Sign in / Sign up

Export Citation Format

Share Document