Cyanide-resistant respiration in isolated Asparagus mesophyll cells

1984 ◽  
Vol 62 (6) ◽  
pp. 1122-1126 ◽  
Author(s):  
Nancy M. Shadeed ◽  
Alan W. Bown

The inhibitors of oxidative phosphorylation antimycin A (0.5 μg/mL), oligomycin (0.01 mg/mL), and sodium azide (3 mM) eliminated energy-dependent H+ efflux from isolated Asparagus mesophyll cells. Antimycin A and oligomycin also reduced ATP levels by 60% or more. In contrast the same concentrations of inhibitors had little or no effect on respiratory O2 consumption. The sequential addition of potassium cyanide to give a final concentration of 5.2 μM resulted in a 60% maximum inhibition of O2 consumption. Subsequent addition of 0.2 mM disulfiram (tetraethylthiuram disulfide), a potent inhibitor of cyanide-resistant respiration, resulted in a further reduction of the oxygen consumption rate. In the absence of cyanide, 0.2 mM disulfiram inhibited O2 consumption by 40 to 80%, depending on the suspension medium. Disulfiram had little or no effect on the ATP levels which varied between 0.7 and 2.2 nmol ATP/106 cells. The results indicate that disulfiram inhibits a non-energy-conserving cyanide-resistant alternative pathway in Asparagus mesophyll cells.

1969 ◽  
Vol 24 (1) ◽  
pp. 67-76 ◽  
Author(s):  
J.-H. Klemme

The light-driven and the ATP-driven reduction of nicotinamide adenine dinucleotide (NAD) catalyzed by the chromatophore fraction of Rhodopseudomonas capsulata was investigated. Efficient electron donors for the photoreduction of NAD are molecular hydrogen and succinate. In the ATP-dependent reaction system, succinate is a more efficient electron donor than H2. The energydependent NAD-reduction is driven by ATP, but not by pyrophosphate or ADP. Oligomycin stimulates the NAD-photoreductions and completely inhibits the ATP-driven NAD-reductions. Rotenone and piericidin A are inhibitors for both the light-driven and the ATP-driven NAD-reductions. Antimycin A is an inhibitor only for the light-driven reductions. The H2-linked NAD-photoreduction is less sensitive to these inhibitors and to the uncoupler desaspidin than the succinate-linked reduction. Atebrine, carbonyl cyanide-m-chlorophenylhydrazone, 2,4-dinitrophenol and phenazonium methosulfate are inhibitors for the light-driven and the ATP-driven reductions. Some of the compounds used as inhibitors of the NAD-reduction were also investigated with concerns to their inhibitory effects on cyclic photophosphorylation and O2-linked oxidations of reduced NAD, succinate and H2. Based on the results of these inhibitor studies, the relationships between cyclic photophosphorylation, light-induced noncyclic electron transport and energy-dependent NAD-reduction are discussed.


1989 ◽  
Vol 257 (4) ◽  
pp. C817-C824 ◽  
Author(s):  
R. Lomneth ◽  
E. I. Gruenstein

Swelling of astrocytes in the brain is a major cause of the morbidity and mortality associated with stroke and head trauma. Using a human astrocytoma cell line (UC-11MG) as a model system, we studied cell volume changes caused by ATP depletion under conditions mimicking hypoxia. ATP levels were reduced to less than 10% of control using the metabolic inhibitors KCN or antimycin in combination with glucose deprivation. This was sufficient to eliminate ouabain-sensitive 86Rb+ uptake, indicating the Na+-K+-adenosinetriphosphatase was not operating. Furosemide-sensitive 86Rb+ uptake was reduced by approximately 60%, indicating Na+-K+-2Cl- cotransport was also sensitive to ATP loss. ATP depletion resulted in a 30-40% reduction of cell volume within 60 min. ATP depletion also resulted in a net loss of intracellular K+. This loss of K+ could be blocked by Ba2+, indicating the K+ loss was through a conductive channel. When the net K+ loss was blocked by Ba2+, the volume decrease was also prevented. The cells remained viable throughout the time period as judged by exclusion of ethidium bromide by 99% of the cells and recovery of ATP levels to 75% of control within 60 min. We conclude that ATP depletion, following inhibition of glycolysis and oxidative phosphorylation, causes astrocytes to shrink because of a more rapid loss of K+ than uptake of Na+. Thus it appears that ATP depletion alone is not sufficient to account for the rapid phase of astrocytic swelling observed during cerebral ischemia.


1979 ◽  
Author(s):  
J.O. Capobianco ◽  
W.H. Holleman

The adhesion of rabbit gel filtered platelets (GFP) to collagen-Sepharose was found to be largely energy independent, since metabolic inhibitors only partially suppressed this process. 51Cr and 14C-serotonin labeled GFP were incubated at 37°C/10 min. with anti-metabolites prior to passage over collagen-Sepharose columns. Adhesion and release responses were determined by 51Cr content of columns and 14C content of the supernatant from column eluents. Antimycin-A (AA, 2μg/ml), or AA plus 2-deoxy-D-glucose (2DG, 32mM) or Rotenone (R, 2μg/ml) produced small reductions in adhesion. All three compounds inhibited release, their effects being additive. 2DG or glucono-§-lactone (GLAC, 10mM) alone had little or no effect on adhesion. 2DG reduced release response by 40%, while GLAC had no effect. AA or R reduced adhesion by 35% and 31%, and release by 51% and 47%, respectively. The combination of 2DG, GLAC, AA and R did not reduce adhesion more than 45%. The Inhibitory effects of AA were time and dose related, and the addition c glucose (0.1%) circumvented these effects. These experiments suggest that adhesion includes energy dependent and independent phases. In addition, spherical platelets (GFP at 4°c/24 hrs.) also adhered to collagen-Sepharose; however, in contrast to disc-platelets (GFP at 37°c/10 min.), the adhering platelets demonstrated a depressed release response (-79%),


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 12-18 ◽  
Author(s):  
MO Spycher ◽  
UE Nydegger

Abstract The differential uptake of tritium-labeled immunoglobulin G (IgG) cross- linked with bisdiazonium-benzidine (BDB) (3H-BDB-IgG) by washed, pooled human platelets to sites inaccessible to pronase digestion was tested. Up to 52% of the 3H-BDB-IgG associated with platelets at 37 degrees C resisted pronase treatment, whereas only 23% of the cross-linked IgG associated with platelets at 4 degrees C, or at 37 degrees C but in the presence of deoxyglucose/antimycin A, remained refractory to pronase. This effect was not due to platelet agglutination. Pronase resistance reached a maximum after a 60-minute incubation period at 37 degrees C. With increasing 3H-BDB-IgG input, both the total cross-linked IgG associated with platelets and the fraction resistant to pronase digestion approached saturation at 4 degrees C, but not at 37 degrees C. The proportion of 3H-BDB-IgG bound to platelets at 4 degrees C that was resistant to pronase treatment increased by 13% within five minutes of warming the platelets to 37 degrees C. Pretreatment of platelets with 10 mmol/L acetylsalicylic acid (or 10 mumol/L prostaglandin E1) prior to the addition of 3H-BDB-IgG led to a 74% (95%) inhibition of the 3H-BDB-IgG-induced 14C-serotonin release, but to only a 44% (49%) inhibition of pronase-digestible bound ligand. In contrast, pretreatment with 10 mumol/L cytochalasin B led to a mere 17% reduction of 14C-serotonin release, whereas acquisition of resistance to pronase digestion by the bound 3H-BDB-IgG was inhibited by 90%. Incubation of platelets at 37 degrees C with 3H-BDB-IgG and removal of unbound material prior to the addition of prostaglandin E1 or deoxyglucose/antimycin A had little effect on the susceptibility of platelet-associated 3H-BDB-IgG to pronase, whereas the addition of cytochalasin B to 3H-BDB-IgG-treated platelets resulted in greatly increased susceptibility of the platelet-associated ligand to pronase. Thus, after binding, 3H-BDB-IgG becomes transferred in an energy- dependent process to pronase-resistant cellular sites, most likely to the open canalicular system.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yue Shan ◽  
Autumn Brown Gandt ◽  
Sarah E. Rowe ◽  
Julia P. Deisinger ◽  
Brian P. Conlon ◽  
...  

ABSTRACT Persisters are dormant variants that form a subpopulation of cells tolerant to antibiotics. Persisters are largely responsible for the recalcitrance of chronic infections to therapy. In Escherichia coli , one widely accepted model of persister formation holds that stochastic accumulation of ppGpp causes activation of the Lon protease that degrades antitoxins; active toxins then inhibit translation, resulting in dormant, drug-tolerant persisters. We found that various stresses induce toxin-antitoxin (TA) expression but that induction of TAs does not necessarily increase persisters. The 16S rRNA promoter rrnB P1 was proposed to be a persister reporter and an indicator of toxin activation regulated by ppGpp. Using fluorescence-activated cell sorting (FACS), we confirmed the enrichment for persisters in the fraction of rrnB P1 -gfp dim cells; however, this is independent of toxin-antitoxins. rrnB P1 is coregulated by ppGpp and ATP. We show that rrnB P1 can report persisters in a relA / spoT deletion background, suggesting that rrnB P1 is a persister marker responding to ATP. Consistent with this finding, decreasing the level of ATP by arsenate treatment causes drug tolerance. Lowering ATP slows translation and prevents the formation of DNA double-strand breaks upon fluoroquinolone treatment. We conclude that variation in ATP levels leads to persister formation by decreasing the activity of antibiotic targets. IMPORTANCE Persisters are a subpopulation of antibiotic-tolerant cells responsible for the recalcitrance of chronic infections. Our current understanding of persister formation is primarily based on studies of E. coli . The activation of toxin-antitoxin systems by ppGpp has become a widely accepted model for persister formation. In this study, we found that stress-induced activation of mRNA interferase-type toxins does not necessarily cause persister formation. We also found that the persister marker rrnB P1 reports persister cells because it detects a drop in cellular ATP levels. Consistent with this, lowering the ATP level decreases antibiotic target activity and, thus, leads to persister formation. We conclude that stochastic variation in ATP is the main mechanism of persister formation. A decrease in ATP provides a satisfactory explanation for the drug tolerance of persisters, since bactericidal antibiotics act by corrupting energy-dependent targets.


2002 ◽  
Vol 283 (4) ◽  
pp. H1600-H1608 ◽  
Author(s):  
Girija G. Konduri ◽  
Janine Mattei

We investigated the hypothesis that birth-related pulmonary vasodilation is mediated in part by an increase in oxidative phosphorylation and ATP release in response to oxygen exposure at birth. Studies were done in fetal lambs to evaluate the independent effects of oxygen, lung distension alone, or lung distension accompanied by oxygenation and shear stress on fetal pulmonary blood flow and resistance and plasma ATP levels in the pulmonary artery. The effect of each intervention was evaluated in lambs assigned to one of three groups: control or pretreatment with 2,4-dinitrophenol or antimycin-A, inhibitors of oxidative phosphorylation. Exposure to oxygen alone or with lung distension was associated with increases in plasma ATP levels and pulmonary blood flow and a decrease in pulmonary vascular resistance. Plasma ATP levels did not change during lung distension alone. 2,4-Dinitrophenol and antimycin-A attenuated the pulmonary vasodilator response to oxygen but did not attenuate the response to lung distension alone. An increase in oxidative phosphorylation and ATP release during oxygen exposure may contribute to birth-related pulmonary vasodilation in fetal lambs.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. R. Othman ◽  
N. A. Bakar ◽  
M. I. E. Halmi ◽  
W. L. W. Johari ◽  
S. A. Ahmad ◽  
...  

Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified asBacillussp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong’s constantspmax,Ks,Sm, andnwas 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.


Sign in / Sign up

Export Citation Format

Share Document